首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时, (Ⅰ)β不能由α1,α2,α3,α4线性表示? (Ⅱ)β能用α1,α2,α3,α4线
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时, (Ⅰ)β不能由α1,α2,α3,α4线性表示? (Ⅱ)β能用α1,α2,α3,α4线
admin
2018-06-15
26
问题
已知α
1
=(1,1,0,2)
T
,α
2
=(-1,1,2,4)
T
,α
3
=(2,3,a,7)
T
,α
4
=(-1,5,-3,a+6)
T
,β=(1,0,2,b)
T
,问a,b取何值时,
(Ⅰ)β不能由α
1
,α
2
,α
3
,α
4
线性表示?
(Ⅱ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一;
(Ⅲ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一,并写出此时表达式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
+x
3
α
4
=β,对增广矩阵(α
1
,α
2
,α
3
,α
4
[*]β)作初等行变换,有 [*] (Ⅰ)当a=1,b≠2或a=10,b≠-1时,方程组均无解.所以β不能由α
1
,α
2
,α
3
,α
4
线性表出. (Ⅱ)当a≠1且a≠10时,[*]b方程组均有唯一解.所以β能用α
1
,α
2
,α
3
,α
4
线性表示且表示法唯一. (Ⅲ)方程组在两种情况下有无穷多解,即(1)当a=10,b=-1时,方程组有无穷多解: [*] (2)当a=1,n=2时,方程组有无穷多解:x
4
=-1/3,x
2
=t,x
3
=1-2t,x
1
=5t-[*] 即β=(5t-[*])α
1
+tα
2
+(1-2t)α
3
-[*]α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/zxg4777K
0
考研数学一
相关试题推荐
求直线在平面π:x-y+3z+8=0的投影方程.
设平面区域σ由σ1与σ2组成,其中,σ1={(x,y)|0≤y≤a-x,0≤x≤a),σ2={(x,y)|a≤x+y≤b,x≥0,y≥0),如图1.6-1所示,它的面密度试求薄片σ1关于y轴的转动惯量J1与σ2关于原点的转动惯量J0
设D为xOy平面上的区域,若f’’xy与f’’yx都在D上连续,证明:f’’xy与f’’yx在D上相等.
设随机变量X服从泊松分布,且P{X≤1)=4P{X=2),则P{X=3)=________
设f(x)为连续函数,a与m是常数且a>0,将二次积分化为定积分,则I=_______
求(a为常数,0
设函数f(x)在[a,b]上有连续导数,在(a,6)内二阶可导,且,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
曲线积分(2xcosy+ysinx)dx-(x2sinynacosx)dy,其中曲线为位于第一象限中的圆弧x2+y2=1,A(1,0),B(0,1),则I为()
设n是曲面2x2+3y2+z2=6在点P(1,1,1)处的指向外侧的法向量,求函数u=在点P处沿方向n的方向导数.
设一批零件的长度服从正态分布N(μ,σ2),其中σ2已知,μ未知.现从中随机抽取n个零件,测得样本均值,则当置信度为0.90时,判断μ是否大于μ0的接受条件为(ua满足dt=α)
随机试题
字长8位(bit)时,能表达的灰阶数是
下列含有手性碳原子的药物为
工程项目质量优良评定标准为单位工程质量全部合格,其中有()以上的单位工程优良,且主要建筑物单位工程为优良。
关于存款,下列说法错误的是()。
对劳动者而言,物质帮助权主要通过()来实现。
中国对外政策的基本原则是()。
语气
郑女士:衡远市过去十年的GDP(国内生产总值)增长率比易阳市高,因此衡远市的经济前景比易阳市好。胡先生:我不同意你的观点。衡远市的GDP增长率虽然比易阳市高,但易阳市的GDP数值却更大。以下哪项最为准确地概括了郑女士和胡先生争议的焦点?
在以太网的10Base-5标准中,粗同轴电缆的特性阻抗为(14),物理层采用(15)编码;100Base-TX采用的是(16)物理拓扑结构,传输介质通常采用(17)类双绞线;100Base-FX采用的传输介质是(18)。
Autonomousrobotsareabletomoveanddecidebythemselves.Atasimplelevel,thesecanincluderobotvacuumcleanersthat"de
最新回复
(
0
)