首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
admin
2019-08-28
114
问题
设n阶实对称矩阵A的秩为r,且满足A
2
=A(A称为幂等阵).求:(1)二次型X
T
AX的标准形;(2)|E+A+A
2
+…+A
n
|的值.
选项
答案
(1)因为A
2
=A,所以|A||E-A|=0,即A的特征值为0或者1,因为A为实对称矩阵,所以A可对角化,由r(A)=r得A的特征值为λ=1(r重),λ=0(n-r重),则二次型X
T
AX的标准形为y
1
2
+y
2
2
+…+y
r
2
. (2)令B=E+A+A
2
+…+A
n
,则B的特征值为λ=n+1(r重),λ=1(n-r重),故|E+A+A
2
+…+A
n
|=|B|=(n+1)
r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/CvJ4777K
0
考研数学三
相关试题推荐
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=___________.
判别下列级数的敛散性.若收敛,需说明是绝对收敛还是条件收敛.
(2004年)设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b];∫abf(t)dt=∫abg(t)dx证明:∫abxf(x)dx≤∫abxg(x)dx
(2005年)以下四个命题中,正确的是()
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A是3阶方阵,A*是A的伴随矩阵,A的行列式|A|=1/2,求行列式|(3A)-1-2A*|的值.
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
已知线性方程组有非零解,而且矩阵是正定矩阵.求当xTx=2时,XTAX的最大值,其中X=(x1,x2,x3)T为3维实向量.
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
下列说法正确的是().
随机试题
下列哪项检查属于直接引人造影剂方式
M公司1999年末流动负债为60万元,速动比率为2.5,流动比率为3.0,产品销售成本为50万元。假设M公司本年度没有待摊费用,存货保持不变。根据以上资料,该公司1999年存货周转率为( )。(计算保留至小数点后两位)
行政界线采用0.5分辨率的航摄设计用图比例尺1:2.5万,成图比例尺测图为()。
______可以作为合理税收筹划方法。
下列各项中,可以成为普通合伙人的是()。
小李一家3人进行抢红包游戏,每人发1个红包。结果每人抢得金额总额一致,均为100元,刚巧3人所发红包金额为互不相同整数且成等差数列。问3人中所发红包金额最多的可能是多少元?
氟牙症牙齿特点是()。
Itriedinvaintopersuadehimtogiveupthatidea.
Whathesaidwassosubtlethatwecouldhardly______histrueintention.
TheAdvantagesandDisadvantagesofBuyingLotteryTomatoRipeningTomatoesgiveoffminutequ
最新回复
(
0
)