首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明: (Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(一∞,+∞)有界.
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明: (Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(一∞,+∞)有界.
admin
2018-11-21
70
问题
设f(x)在(一∞,+∞)连续,存在极限
f(x)=B.证明:
(Ⅰ)设A<B,则对
ξ∈(一∞,+∞),使得f(ξ)=μ;
(Ⅱ)f(x)在(一∞,+∞)有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]f(x)=A<μ及极限的不等式性质可知,[*]X
1
使得f(X
1
)<μ. 由[*]X
2
>X
1
使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,f(X
1
)<μ<f(X
2
),由连续函数介值定理知[*]ξ∈(X
1
,X
2
)[*](一∞,+∞),使得f(ξ)=μ. (Ⅱ)因[*]f(x)=B,由存在极限的函数的局部有界性定理可知,[*]X
1
使得当x∈(一∞,X
1
)时f(x)有界;[*]X
2
(>X
1
)使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(一∞,+∞)上右界.
解析
转载请注明原文地址:https://kaotiyun.com/show/IOg4777K
0
考研数学一
相关试题推荐
已知X~N(3,4),Y服从指数分布fY(y)=X,Y的相关系数ρ=-1/4,Z=3X一4Y,则Z的方差D(Z)=___________.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量β2不能由α1,α2,α3线性表示,则必有()
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表示;(Ⅱ)求Anβ。
设f(x)在[a,b]上有二阶连续导数,证明
设曲线L的参数方程为x(t)=t-sint,y(t)=1-cost(0≤t≤2π)。求曲线L与x轴所围图形绕y轴旋转一周所成的旋转体的体积V。
已知方程组有无穷多解,则a=________。
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f’’(η)+f’(η)=1。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
椭球面∑1是椭圆L:相切的直线绕z轴旋转而成.(Ⅰ)求∑1及∑2的方程;(Ⅱ)求位于∑1及∑3之间的立体体积.
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
随机试题
EZNi一1(Z308)焊条的焊芯是_____。
下列血浆脂蛋白中胆固醇含量最高、最低的分别是
中医最可能的诊断是选方宜
A.来势迅速,水肿先从眼睑开始,甚则全身浮肿B.稍有浮肿,小便黄赤短少C.浮肿,面色苍白汗出D.浮肿下肢为甚,怕冷,反复不愈E.面部,四肢浮肿,头晕心悸
(2007)居住区内埋设的各类管线中,离建筑物最近的是()。
政府采购中应当遵循的公正原则更主要地体现在()的确定上。
商品流通企业经营决策的一般过程是()。
复合杠杆的作用在于( )。
我们从不拒斥时尚,并乐于承认自己在生活中还曾受惠于时尚。但说文学不能脱离时代与不能受惠于时尚,其间区别是巨大而本质的。因为作家不是模特、艺人或设计师,他可以追随时代,但永远不能攀附潮流。因为跟着潮流亦步亦趋,只能使他变成一个受塑者而做不成创造者。并且,这种
2021年8月26日,第三次全国国土调查主要数据成果公布。数据显示,我国耕地面积()亩。
最新回复
(
0
)