首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2018-11-11
47
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一 令A[*],因为α
1
,α
2
,α
m
与β正交,所以Aβ=0,即β为方程组Ax=0的解,而α
1
,α
2
,α
n
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0 因为α
1
,α
2
,…,α
n
与β正交,所以k
0
β
T
β=0,即k
0
|β|
2
=,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,…,α
n
线性无关,得k
1
=k
2
=…k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/cxj4777K
0
考研数学二
相关试题推荐
设总体X服从N(μ,σ2),分别是取自总体X的样本容量分别为10和15的两个样本均值,记p1=,则有()
已知的一个特征向量.(1)试确定参数a,b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设矩阵A与B相似,且求可逆矩阵P,使P一1AP=B.
设矩阵A与B相似,且求a,b的值;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求:A2;
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)c=0()
设函数y=y(x)是由方程xy+ey=x+1确定的隐函数,求
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
设f(x)在[0,+∞)上连续,0<a<b,且∫A+∞出收敛,其中常数A>0.试证明:
随机试题
支付应用系统的核心是_______。()
A.脘腹满闷,喜温喜按B.脘腹痞闷,胸胁胀满C.脘腹痞塞不舒,身重困倦D.脘腹痞闷,舌红,口苦E.以上皆非肝胃不和证痞满的特点为
背景:某公司承建城市跨线桥,主桥长520m,桥宽22.15m,跨越现况河渠;桥梁中三跨上部结构为钢筋混凝土预应力连续梁,跨径组合为30m+35m+30m,其余部分为22m长T形简支梁。承台平面尺寸5m×26m,以群桩形式布置128根桩,采用沉桩施工。项目
下列属于高级社会性需要的有()。
设方程ylny—x+y=0确定函数y=y(x),求y’,y″在点(1,1)处的值。
甲为了骗取保险金,花1万元买来一辆二手名牌轿车,通过在某国有保险公司担任业务员的好友乙经办,向该保险公司谎报轿车价值为20万元,投保车辆盗抢、毁损险。之后,甲找到中学生丙(男,15岁),给丙5000元报酬,请丙将停在甲自家平房前的轿车烧毁。丙问为什么,甲说
社会主义时期处理民族问题的基本原则是,维护祖国统一,反对民族分裂,坚持民族平等、民族团结、各民族共同繁荣。对这一基本原则的正确理解是
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):(1)求解方程组(Ⅰ),用其导出组的基础解系表示通解;(2)当(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
()技术不能保障应用系统的完整性。
HarlemRenaissancereferstoaperiodlastingformorethan10years,duringwhichagroupofAfricanandAmericanwritersprodu
最新回复
(
0
)