首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量. 求A的另一特征值和对应的特征向量;
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量. 求A的另一特征值和对应的特征向量;
admin
2018-07-27
55
问题
设3阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(-1,2,-3)
T
,都是A的属于特征值6的特征向量.
求A的另一特征值和对应的特征向量;
选项
答案
因为λ
1
=λ
2
=6是A的二重特征值,故A的属于特征值6的线性无关的特征向量有2个,有题设可得α
1
,α
2
,α
3
的一个极大无关组为α
1
,α
2
,故α
1
,α
2
为A的属于特征值6的线性无关的特征向量. 由r(A)=2知|A|=0,所以A的另一特征值为λ
3
=0. 设λ
3
=0对应的特征向量为α=(x
1
,x
2
,x
3
)
T
,则有α
i
T
α=0(i=1,2),即[*]解得此方程组的基础解系为α=(-1,1,1)
T
,即A的属于特征值λ
3
=0的特征向量为kα=k(-1,1,1)
T
(k为任意非零常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/vWW4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设常数a>2,则级数
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设4阶矩阵A的秩为2,则r(A*)=_____.
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
已知A是3阶非零矩阵,且aij=Aij(=1,2,3),证明A可逆,并求|A|.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
随机试题
多人操作设备吊装时,为了确保安全,应有两人指挥。()
传统式损益平衡图反映了销售量、成本与利润之间的什么规律?
实验室检查
患者,男,53岁。饮酒后出现下腹部胀痛、排尿困难,查体可见耻骨上膨隆,扪及囊样包块,有压痛,叩诊呈实音,该患者最可能出现的是尿潴留。尿潴留最可能的原因是
现金、银行存款日记账,可定期(三天或五天)登记。()
按照课程的组织核心分类,课程可分为()。
某人准备了两杯等量的水及一些块状冰糖与白糖粉末(两者成分均为蔗糖),做溶解速率与溶解度的实验。在25℃时,他将相同质量的冰糖与白糖粉末分别加人两个杯子中,并以相同的速率不断搅拌,最后两个杯子中均有未溶解的糖。则下列糖的质量百分比浓度与搅拌时间的关系图,正确
词汇量的年增长率最高是在()
求下列函数的n阶导数的一般表达式:(1)y=xn+a1xn-1+a2xn-2+…+an-1x+an(a1,a2,…,an都是常数);(2)y=sin2x;(3)y=x-1/x+1;(4)y=ln1+x/1-x.
Thismedicalteam______2specialistsappointedbytheMinisterand3doctorsandtwoheadnurses.
最新回复
(
0
)