首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs(s≥2)线性无关,且 β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1. 讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α2,…,αs(s≥2)线性无关,且 β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1. 讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-09-25
53
问题
设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且
β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.
讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
方法一 设x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0,即 (x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0. 因为α
1
,α
2
,…,α
s
线性无关,则 [*] 其系数行列式 [*] 当s为奇数时,|A|=2≠0,方程组只有零解,则向量组β
1
,β
2
,…,β
s
线性无关; 当s为偶数时,|A|=0,方程组有非零解,则向量组β
1
,β
2
,…,β
s
线性相关. 方法二 显然 [β
1
,β
2
,…,β
s
]=[α
1
,α
2
,…,α
s
] [*] =[α
1
,α
2
,…,α
s
]K
s×s
, 因为α
1
,α
2
,…,α
s
线性无关,则 r(β
1
,β
2
,…,β
s
)≤min{r(α
1
,α
2
,…,α
s
),r(K)}=r(K). r(K)=s<=>|K|=1+(-1)
s+1
≠0=>当s为奇数时,两向量组等价,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关; r(K)<=>|K|=1+(-1)
s+1
=0=>当s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/00g4777K
0
考研数学一
相关试题推荐
求曲面积分I=(x+cosy)dydx+(y+cosz)dzdx+(z+cosx)dxdy,其中S为x+y+z=π在第一卦限部分,取上侧.
求直线L:在平面∏:x-y+2z-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
经过两个平面∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x-y-z=0垂直的平面方程是__________.
I=dy,其中L是椭圆周=1.取逆时针方向.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式:(Ⅱ)D={(x,y)|x2+y2>0}.
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令Y=X2,求Y的密度函数.
求线性方程组的通解,并求满足条件的所有解.
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放人这十个空盒中,设每个球放人任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:A={某指定的五个盒子中各有一个球
随机试题
川端康成的成名作是
下列选项中,属于家庭美德基本要求的是【】
X线管焦点的调制传递函数(MTF)的叙述,错误的是
提高TN系统接地故障保护灵敏性的措施有()。
新拌混凝土的质量主要包括()。
美方提供的CPU、硬盘申报进口时,企业应向海关提交的单证是()。外商提供的CPU、硬盘进口时,海关可以()。
阅读下面这首宋词,然后回答问题。满江红.登黄鹤楼有感岳飞遥望中原,荒烟外,许多城郭。想当年,花
在1997年的社会消费品零售额中用的商品所占的比例为()。在五年中,哪一种消费品在社会消费品零售额中一直都是最大的?()
根据给定材料,概括出我国人口老龄化的主要特征。要求:内容全面,概括到位,篇幅在200字左右。根据材料所反映的主要问题,就如何解决我国人口老龄化问题,提出具体可行的对策或建议,由此写成一篇论文。要求:结构完整,逻辑严密,论说充分;自选角度,自拟标题,篇幅
Itiscommonlyheldthatdrinkingmoderateamountsofalcoholcanreducetheoddsofhavingadeadlyheartattack.More【B1】_____
最新回复
(
0
)