首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs(s≥2)线性无关,且 β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1. 讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α2,…,αs(s≥2)线性无关,且 β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1. 讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-09-25
51
问题
设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且
β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.
讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
方法一 设x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0,即 (x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0. 因为α
1
,α
2
,…,α
s
线性无关,则 [*] 其系数行列式 [*] 当s为奇数时,|A|=2≠0,方程组只有零解,则向量组β
1
,β
2
,…,β
s
线性无关; 当s为偶数时,|A|=0,方程组有非零解,则向量组β
1
,β
2
,…,β
s
线性相关. 方法二 显然 [β
1
,β
2
,…,β
s
]=[α
1
,α
2
,…,α
s
] [*] =[α
1
,α
2
,…,α
s
]K
s×s
, 因为α
1
,α
2
,…,α
s
线性无关,则 r(β
1
,β
2
,…,β
s
)≤min{r(α
1
,α
2
,…,α
s
),r(K)}=r(K). r(K)=s<=>|K|=1+(-1)
s+1
≠0=>当s为奇数时,两向量组等价,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关; r(K)<=>|K|=1+(-1)
s+1
=0=>当s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/00g4777K
0
考研数学一
相关试题推荐
设4阶矩阵A的秩为2.则r(A*)=__________.
I=∫Lyzdx+3zxdy-xydz,其中L是曲线且顺着x轴的正向看是沿逆时针方向.
求方程y″+2my′+n2y=0的通解;又设y=y(x)是满足y(0)=a,y′(0)=b的特解,求y(x)dx,其中m>n>0,a,b为常数.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=____________.
已知随机变量X与Y均服从0-1分布,且EXY=,则P{X+Y≤1}=
证明条件极值点的必要条件(8.9)式,并说明(8.9)式的几何意义.
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:(Ⅰ)随机检验一箱产品,它能通过验收的概率p;
设A、B是两个随机事件,且P(A)==___________.
已知a23a31aija64a56a15是6阶行列式中的一项,试确定i,j的值及此项所带符号.
设二阶常系数线性微分方程y″+ay′+βy=γe2x的一个特解为y=e2x+(1+x)ex.求此方程的通解.
随机试题
一般来说,背景吸收是使吸光度增加而产生正误差。()
下列病变不是T1及T2加权像均呈高信号的是
A、刺痛拒按,固定不移,舌暗,脉涩B、气短疲乏,脘腹坠胀,舌淡,脉弱C、胸胁胀闷窜痛,时轻时童,脉弦D、面色淡白,口唇爪甲色淡,舌淡,脉细E、少气懒言,疲乏无力,自汗,舌淡,脉虚血瘀证可见的症状是
《公司法》对公司的出资形式的限额做出限制的是( )。
消火栓的间距应小于或等于()。
常用的确定设备最佳更新期的方法有低劣化数值法和()。
为了预防病毒,在计算机中安装了操作系统补丁(windowsupdate)的防病毒软件,也按时升级了病毒定义文件,仍旧被种了木马程序(即被感染病毒),最不可能的原因是()。
以可见光波的长短为序,人类感觉到的颜色依次为()。
汉代选拔和任用官吏的方法有()
在计算机指令中,规定其所执行操作功能的部分称为()。
最新回复
(
0
)