设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.

admin2022-04-02  51

问题 设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.

选项

答案令B=(α1,α2,…,αn),因为α1,α2,……,αn为n个n维线性无关的向量,所以r(B)=n.(Aα1,Aα2,…,Aαn)=AB,因为r(AB)=r(A),所以Aα1,Aα2,…,Aαn线性无关的充分必要条件是r(A)=n,即A可逆.

解析
转载请注明原文地址:https://kaotiyun.com/show/02R4777K
0

最新回复(0)