首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
admin
2022-04-02
54
问题
设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,A是n阶矩阵.证明:Aα
1
,Aα
2
,…,Aα
n
线性无关的充分必要条件是可逆.
选项
答案
令B=(α
1
,α
2
,…,α
n
),因为α
1
,α
2
,……,α
n
为n个n维线性无关的向量,所以r(B)=n.(Aα
1
,Aα
2
,…,Aα
n
)=AB,因为r(AB)=r(A),所以Aα
1
,Aα
2
,…,Aα
n
线性无关的充分必要条件是r(A)=n,即A可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/02R4777K
0
考研数学三
相关试题推荐
设有矩阵Am×n,Bn×m,已知En一AB可逆,证明:En—BA可逆,且(En—BA)-1=En+B(Em一AB)-1A.
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
试证明函数在区间(0,+∞)内单调增加.
设其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是________.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设f(x)二阶可导,=1且f"(x)>0.证明:当x≠0时,f(x)>x.
设二维随机变量(X,Y)的概率密度为f(x,y)=一∞<x<+∞,一∞<y<+∞,求常数A及条件概率密度fY|X(y|x).
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
下列命题成立的是().
随机试题
新生儿Apgar评分的意义是什么?
确定下列函数的单调区间:f(x)=3x-x2;
该病人最有意义的检查为患者拒绝手术治疗,自行回家,6个月后出现呕吐,吐宿食,不含胆汁。CT检查示:"肝内多个圆形低密度灶",此时的TNM分期为
建筑工程竣工验收应当具备下列条件( )。
以下关于期货公司独立董事的表述中,正确的有()。[2014年3月真题]
中央银行在经济衰退时,()法定存款准备金率。
导游应劝阻游客自由活动的情况包括()。
危机介入模式是围绕服务对象的危机而展开的服务。针对危机介入模式的特点,社会工作者()。
Ifyou’reemployedinthefieldofbusiness,thereissomethingyouhavelikelyexperiencedbefore:thefeelingofhelplessness
Whenyouarefirstlearningorperfectingaskill,whetheritbebaking,archery,orpublicspeaking,itiseasytogetstuckwi
最新回复
(
0
)