首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是可逆.
admin
2022-04-02
50
问题
设α
1
,α
2
,…,α
n
为n个n维线性无关的向量,A是n阶矩阵.证明:Aα
1
,Aα
2
,…,Aα
n
线性无关的充分必要条件是可逆.
选项
答案
令B=(α
1
,α
2
,…,α
n
),因为α
1
,α
2
,……,α
n
为n个n维线性无关的向量,所以r(B)=n.(Aα
1
,Aα
2
,…,Aα
n
)=AB,因为r(AB)=r(A),所以Aα
1
,Aα
2
,…,Aα
n
线性无关的充分必要条件是r(A)=n,即A可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/02R4777K
0
考研数学三
相关试题推荐
对三阶矩阵A的伴随矩阵A*先交换第一行与第三行,然后将第二列的一2倍加到第三列得一E,且|A|>0,则A等于().
设y=y(x)是由方程x2+y=tan(x—y)所确定且满足y(0)=0,则y"(0)=__________.
设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为(I)求Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差cov(Y1,Yn);(Ⅲ)若c(Y1+Yn)2是σ2的无偏估计量,求常数c.
已知方程组有解,证明方程组无解.
设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设有以下命题:①若正项级数μn收敛,则μn2收敛;②若<1,则μn收敛;③若(μ2n-1,μ2n)收敛,则μn收敛;④若μn收敛,(-1)nμn发散,则μ2n发散.则以上命题正确的是().
下列命题成立的是().
随机试题
下列哪一项不是按人际关系的内容分类的()
中国古代神话传说中创造天地的是()。
向不相隶属机关请求批准某事项的公文是()。
在地面装备中,锂离子电池主要应用于军用无人地面车辆、机器人、混合电动战车等。对使用油电混合驱动的地面战车来说,采用锂离子电池作为动力源不仅可以降低油耗,减少后勤负担,还可以提高战术车辆的机动力和生存能力。目前,多国军队都加大了混合电驱动战车、无人地面车辆、
设数列{an}=0满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),S(x)是幂级数anxn的和函数.(1)证明S"(x)一S(x)=0;(2)求S(x)的表达式.
设n维列向量a=(a,0,…0,a)T,其中a<0,又A=E-ααT,B=E+(1/a)ααT,且B为A的逆矩阵,则a=________.
FoodFrightExperimentsunderwayinseverallabsaimtocreatebeneficialtypesofgeneticallymodified(GM)foods,including
A、 B、 C、 D、 A图中一个男子正在跑步并且能看见远处的一座桥,因此(A)项的“一个人正在跑步”是正确答案。如果漏听了(B)项的dogs。就可能误以为是正确答案。而且要注意这里的walking不是“跑步
OneofBritain’sbravestwomentoldyesterdayhowshehelpedtocatchsuspected(可疑的)policekillerDavidBieber,andwasthanke
Fortheexecutiveproducerofanetworknightlynewsprogram,theworkdayoftenbeginsatmidnight—asminedidduringsevenyear
最新回复
(
0
)