首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是[0,1]上单调减少的正值连续函数,证明 ∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx, 即要证 I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设f(x)是[0,1]上单调减少的正值连续函数,证明 ∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx, 即要证 I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
admin
2019-08-06
42
问题
设f(x)是[0,1]上单调减少的正值连续函数,证明
∫
0
1
xf
2
(x)dx.∫
0
1
f
3
(x)dx≥∫
0
1
f
3
(x)dx.∫
0
1
f
2
(x)dx,
即要证 I=∫
0
1
f
2
(x)dx.∫
0
1
f
3
(x)dx一∫
0
1
xf
3
(x)dx.∫
0
1
f
2
(x)dx≥0.
选项
答案
记I=∫
0
1
f
2
(x)dx.∫
0
1
f
3
(x)dx—∫
0
1
xf
3
(x)dx.∫
0
1
f
2
(x)dx,则由定积分与积分变量所 I=∫
0
1
xf
2
(x)dx.∫
0
1
f
3
(y)dy—∫
0
1
yf
3
(y)dy.∫
0
1
f
2
(x)dx =∫
0
1
∫
0
1
xf
2
(x)f
3
(y)dxdy—∫
0
1
∫
0
1
yf
3
(y)f
2
(x)dxdy =[*]f
2
(x)f
3
(y)(x一y)dxdy, ① 其中D={(x,y)|0≤x≤1,0≤y≤1}. 由于积分区域D关于直线y=x对称,又有 I=[*]f
2
(y)f
3
(x)(y一x)dxdy. ② 由①式与②式相加,得 I=[*]f
2
(x)f
2
(y)(y一x)[f(x)一f(y)]dxdy. 由于f(x)单调减少,所以I≥0,即∫
0
1
f
2
(x)dx.∫
0
1
f
3
(x)dx≥∫
0
1
xf
3
(x)dx.∫
0
1
f
2
(x)dx.(*) 又f(x)取正值,故∫
0
1
xf
3
(x)dx>0,∫
0
1
f
3
(x)dx>0.用∫
0
1
xf
3
(x)dx与∫
0
1
f
3
(x)dx除(*)式,不等式得证。
解析
转载请注明原文地址:https://kaotiyun.com/show/yfJ4777K
0
考研数学三
相关试题推荐
设随机变量X,Y相互独立,且Y~E(4),令U=X+2Y,求U的概率密度.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为求此二次型.
设f(x)二阶连续可导,且=______.
设其中f(s,t)二阶连续可偏导,求du及
设f(x)是非负随机变量的概率密度,求Y=的概率密度.
设总体X~N(μ,σ2),Y1,Y2,…,Yn(n=16)是来自X的简单随机样本,求下列概率:(Ⅰ)P{(Xi一μ)2≤2σ2};(Ⅱ)P{≤2σ2}.
箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数.(Ⅰ)求随机变量(X,Y)的概率分布;(Ⅱ)求Cov(X,Y).
随机试题
背景依据《建设工程施工合同(示范文本)》(GF—2017—0201),某机场施工单位与另一施工单位于2018年1月1日签订了机场站坪扩建工程建设的分包合同,明确由发包人供应材料与工程设备。进度和工期条款中主要涉及哪些内容?
有公式的单元格处于编辑状态时,单元格里显示经公式计算的结果,与所对应编辑栏显示等号“=”及其运算体和运算符的内容不一致。()
下列所得中,应按“偶然所得”征收个人所得税的有()。
下列项目中,属于确定利润分配政策时应考虑的股东因素的是()。
肌肉在做等长收缩时,肌张力()外加的负荷阻力。
A、邻居太可恶B、他妨碍了邻居C、邻居不正常D、故意找麻烦B
IntenseanddeadlyheatwavehitseasternUSA.
Thepoliceman(警察)tookherthereinapoliceear.She______thereinapolicecarbythepoliceman.
TomorrowJapanandSouthKoreawillcelebrateWhiteDay,anannualeventwhenmenareexpectedtobuyagiftfortheadoredwome
Whichofthefollowingistrueaccordingtothespeaker?
最新回复
(
0
)