设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得            

admin2019-08-06  30

问题 设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
           

选项

答案令F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=f(a)g(b),由罗尔定理,存在ξ∈(a,b),使得F’(ξ)=0,而F’(x)=f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x),所以 [*]

解析 这是含端点和含ξ的项的问题,且端点与含ξ的项不可分离,具体构造辅助函数如下.把结论中的ξ换成x得,整理得
    f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x)=0,
还原得
    [f(x)g(b)+f(a)g(x)一f(x)g(x)]’=0,
辅助函数为
    F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x).
转载请注明原文地址:https://kaotiyun.com/show/L5J4777K
0

随机试题
最新回复(0)