首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)+(χ+aχ)2+…+(χn+anχ1)2.a1,a2,…,an满足什么条件时f(χ1,χ2,…,χn)正定?
已知二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)+(χ+aχ)2+…+(χn+anχ1)2.a1,a2,…,an满足什么条件时f(χ1,χ2,…,χn)正定?
admin
2019-04-22
59
问题
已知二次型f(χ
1
,χ
2
,…,χ
n
)=(χ
1
+a
1
χ
2
)+(χ+aχ)
2
+…+(χ
n
+a
n
χ
1
)
2
.a
1
,a
2
,…,a
n
满足什么条件时f(χ
1
,χ
2
,…,χ
n
)正定?
选项
答案
记y
1
=χ
1
+a
1
χ
2
,y
2
=χ
2
+a
2
χ
3
,…,y
n
=χ
n
+a
n
χ
1
,则 [*] 简记为Y=AX. 则f(χ
1
,χ
2
,…,χ
n
)=Y
T
Y=X
T
A
T
AX.于是,实对称矩阵A
T
A就是f(χ
1
,χ
2
,…,χ
n
)的矩阵.从而f正定就是A
T
A正定. A
T
A正定的充要条件是A可逆.计算出|A|=1+(-1)
n-1
a
1
a
2
…a
n
.于是,f正定的充要条件为a
1
a
2
…a
n
≠(-1)
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/03V4777K
0
考研数学二
相关试题推荐
曲线y2=2χ在任意点处的曲率为_______.
设A,B为同阶可逆矩阵,则()
A=,r(A)=2,则()是A*X=0的基础解系.
设向量组α1,α2,α3,线性无关,则下列向量组中线性无关的是()
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(z)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
设曲线y=在点(x0,y0)处有公共的切线,求:两曲线与x轴所围成的平面图形绕X轴旋转所得旋转体的体积.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
随机试题
从资源管理的角度看,操作系统的主要功能包括处理器管理、存储管理、设备管理、联网与通信管理以及()。
猩红热样皮疹多见于频咳,喘憋重多见于
对于急性胰腺炎患者,以下哪项是护士
控制阀校准和试验要求包括()。
为了分清会计事项处理的先后顺序,便于记账凭证与会计账簿之间的核对,确保记账凭证的完好无缺,填制记账凭证时,应当( )。
宁夏旅游资源中的“两山一河”指的是()。
实施培训是指在企业培训组织管理部门或岗位人员的组织下,由培训教师实施培训,其主要内容不包括()。
下列作品中属于编年体历史著作的是()。
一个人的拥有,不是取决于机遇,而是取决于人的眼光。眼光______的人,只看到一时,而看不到一世;眼光______的人,只看到好的一面,而看不到坏的一面;只有那些眼光长远、______的人,才能拥有很多很多。填入横线部分最恰当的一项是()。
WhatistheMangoingtobuy?
最新回复
(
0
)