首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数. (Ⅰ)写出f(χ)在[-2,0]上的表达式; (Ⅱ)问k为何值时,f(χ)在χ=
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数. (Ⅰ)写出f(χ)在[-2,0]上的表达式; (Ⅱ)问k为何值时,f(χ)在χ=
admin
2016-05-30
49
问题
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ
2
-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.
(Ⅰ)写出f(χ)在[-2,0]上的表达式;
(Ⅱ)问k为何值时,f(χ)在χ=0处可导.
选项
答案
(Ⅰ)当-2≤χ<0,即0≤χ+2<2时, f(χ)=kf(χ+2)=k(χ+2)[(χ+2)
2
-4]=kχ(χ+2)(χ+4). (Ⅱ)由题设知f(0)=0. [*] 令f′
-
(0)=f′
+
(0),得k=-[*]. 即当k=-[*]时,f(χ)在χ=0处可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/0734777K
0
考研数学二
相关试题推荐
设微分方程+p(x)y=f(x)有两个特解,则该微分方程的通解为________.
计算二次积分I=∫-∞+∞dy∫-∞+∞min{x,y}dxdy.
求常数项级数的和:
设函数f(x,y)在点(0,0)处连续,且(1)求,并讨论它们在点(0,0)处是否可微,若可微求出df(x,y)|(0,0);(2)证明:f(x,y)在点(0,0)处取得极小值.
设二元函数F(x,y)具有二阶连续的偏导数,且F(x0,y0)=0,F’x(x0,y0)=0,F’y(x0,y0)>0.若一元函数y=y(x)是由方程F(x,y)=0所确定的在点(x0,y0)附近的隐函数,则x0是函数y=y(x)的极小值点的一个充分条件是
平面π1:2x-3y-z+1=0到平面π2:2x-3y-z-2=0的距离是().
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设f(x)三阶可导,且f"’(a)≠0,
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(,0).求L位于第一象限部分的一条切线,使得该切线与L以及两坐标轴所围图形的面积最小。
(2000年试题,一)设E为四阶单位矩阵,且B=(E+A)-1(E—A),则(E+B)-1=___________.
随机试题
试论教学的巩固性原则。
必然性是由事物的()
患者,女,59岁。CT显示左侧盆腔囊实性病变,大小约6.0×7.5CM,边缘清楚,囊壁厚度约为4MM,有小斑点状钙化;增强扫描示实性部分有强化时应诊断为
A口服B皮内注射C皮下注射D肌内注射E静脉注射卡介苗的接种方法是
A.急性胎儿窘迫B.轻度新生儿窒息C.慢性胎儿窘迫D.重度新生儿窒息E.新生儿产伤胎儿在宫内有缺氧现象危及胎儿健康和生命,发生在妊娠末期,应考虑
采用静力压桩法施工时,先将桩压入土中()左右停止,校正桩的垂直度后,再继续压桩。
下列错账,适用于“除9法”查找的有()。
中国银行业协会的宗旨是()。
下列不属于法律行为的是()。
SorryIdidn’tturnup—Icompletelyforgot.
最新回复
(
0
)