首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
admin
2016-05-30
53
问题
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ
0
,0),证明a<χ
0
<b.
选项
答案
曲线y=f(χ)在点(b,f(b))处的切线方程为 y-f(b)=f′(b)(χ-b) 该切线与z轴交点处的χ坐标为χ=b-[*]. 由于f′(χ)>0,则f′(b)>0,f(χ)单增,f(b)>f(a)>0,则 χ
0
=b-[*]<b 欲证χ
0
>a,等价于证明b=-[*]>a,又f′(b)>0,则等价于证明 f′(b)(b-a)>(b) 事实上f(b)=f(b)-f(a)=f′(ξ)(b-a) a<ξ<b 由于f〞(χ)>0,则f′(χ)单调增,从而f′(ξ)<f′(b),则 f(b)=f′(ξ)(b-a)<f′(b)(b-a) 原题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/mzt4777K
0
考研数学二
相关试题推荐
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况:(1)点M0(x0,y0,z0)在的∑外部;(2)点M0(x0,y0,z0)在
计算二次积分I=∫-∞+∞dy∫-∞+∞min{x,y}dxdy.
在第Ⅰ象限内作椭球面的切平面,使该切平面与三个坐标面所围成的四面体体积最小,并求切点坐标.
计算曲线积分I=∮L,其中L是以点(1,0)为圆心,R为半径的圆周,取逆时针方向(R≠1).
设f(x,y)为连续函数,且f(x,y)=xf(x,y)dxdy+y2,则f(x,y)=().
计算曲面积分I=(2x+z)dydz+zdxdy,其中∑为有向曲面z=x2+y2(0≤z≤1),并且其法向量与z轴正向夹角为锐角.
设函数f(x)在(-∞,+∞)内连续,其导数的图形如下图,则f(x)有().
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
(1990年)已知=0,其中a,b是常数,则【】
随机试题
未成熟B细胞膜表面的BCR为
在一个时期的生产经营活动结束后,对本期的资源利用状况及其结果进行总结的控制工作是()
A、咳嗽,咯痰稀白B、咳嗽,痰多泡沫C、咳喘,咯痰黄稠D、咳嗽,痰少难咯E、咳喘,痰多易咯热邪壅肺证,可见
下列符合口服补液的适应证为
根据《民事诉讼法》,下列人员中,应当适用回避制度的有()。
《物业管理条例》确立物业管理活动中存在的法律关系有()。
葡萄球菌属于致病菌。()
随着计算机和网络技术的发展,特别是加密技术的进步,开始出现了电子现金这一新的货币形式。电子现金是一种通过电子方式进行银行署名的数字信息,它同信用卡不一样,信用卡本身并不是货币,而只是一种转账手段;电子现金本身就是一种货币,可以直接用来购物,但它又和金币、纸
下列各选项中,属于我国现今法律体系之内的是
微分方程的通解(其中C为任意常数)是
最新回复
(
0
)