(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.

admin2016-05-30  34

问题 (2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.

选项

答案曲线y=f(χ)在点(b,f(b))处的切线方程为 y-f(b)=f′(b)(χ-b) 该切线与z轴交点处的χ坐标为χ=b-[*]. 由于f′(χ)>0,则f′(b)>0,f(χ)单增,f(b)>f(a)>0,则 χ0=b-[*]<b 欲证χ0>a,等价于证明b=-[*]>a,又f′(b)>0,则等价于证明 f′(b)(b-a)>(b) 事实上f(b)=f(b)-f(a)=f′(ξ)(b-a) a<ξ<b 由于f〞(χ)>0,则f′(χ)单调增,从而f′(ξ)<f′(b),则 f(b)=f′(ξ)(b-a)<f′(b)(b-a) 原题得证.

解析
转载请注明原文地址:https://kaotiyun.com/show/mzt4777K
0

最新回复(0)