首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数f(x,y)=x4+y4-2x2-2y2+4xy的极值.
求二元函数f(x,y)=x4+y4-2x2-2y2+4xy的极值.
admin
2019-02-20
43
问题
求二元函数f(x,y)=x
4
+y
4
-2x
2
-2y
2
+4xy的极值.
选项
答案
为求函数f(x,y)的驻点,解如下方程组 [*] 得到三个驻点(x
1
,y
1
)=(0,0),[*] 为判定上述三个驻点是否是极值点,再计算 [*] 在点(0,0)处,由于A(0,0)=-4<0,8(0,0)=4,C(0,0)=-4,且AC-B
2
=0,故无法用充分条件判断点(0,0)是不是f(x,y)的极值点.但由于在直线y=x上,f(x,y)=2x
4
在x=0取极小值;而在直线y=-x上,f(x,-x)=2x
4
-8x
2
在x=0取极大值,所以点(0,0)不是函数f(x,y)的极值点. 在点[*]处,由于A=20>0,B=4,C=20,AC-B
2
=384>0,故[*]是函数f(x,y)的极小值. 在点[*]处,由于A=20>0,B=4,C=20,AC-B
2
=384>0,故[*]也是函数f(x,y)的极小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/0GP4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
证明:方阵A是正交阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
设A是n阶方阵,且E+A可逆,令f(A)=(E—A)(E+A)—1,证明:若A是反对称矩阵,则f(A)是正交阵.
设A是n阶方阵,E+A可逆,记f(A)=(E—A)(E+A)—1,证明:(1)(E+f(A))(E+A)=2E.(2)f(f(A))=A.
设f(x)在x=0处存在二阶导数,且=0,则点x=0().
假设随机变量X和Y独立同分布.P{X=0}=P{Y=0}=1一p,P{X=1}=P{Y=1}=p.随机变量Z=问p取何值时,X和Z独立?这时X,Y,Z是否相互独立?
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).(1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx;(2)计算:|sinx|arctanexdx.
设则在点x=1处函数f(x)
某厂家生产的一种产品同时在两个市场上销售,售价分别为P1,P2,销售量分别为q1,q2,需求函数分别为q1=24一0.2p1,q2=10一0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
求极限I=.
随机试题
相似性是人际吸引的主要条件,在相似性的诸多因素中,最主要的因素是【】
急性较重型肝炎的病变特点是
判断下列的一些论点,其中何项是正确的?
下列融资成本中,属于资金使用成本的是()。
某建设工程项目的承包商准备对该工程的相关信息进行编码,其中包括用于成本控制、进度控制、质量控制、合同管理和信息管理等管理工作的编码。这些编码的基础有( )。
桂林山水是典型的()地貌。
毛泽东在《论联合政府》中提出的坚持群众路线必须反对的错误倾向是()。
有以下程序:#include<stdio.h>main(){intm=1,n=2,*p=&m,*q=&n,*r;r=p;p=q;q=r;printf("%d,%d,%d,%d\n",m,n,*p,*q);
【61】【64】
Although,somestudentsgraduatefromhighschool,theyarevirtuallyilliterate______writingabusinessletter.
最新回复
(
0
)