首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
admin
2016-10-26
59
问题
设n阶矩阵A=
,证明行列式|A|=(n+1)a
n
.
选项
答案
(用数学归纳法) 记D
n
=|A|=[*] 当n=1时,D
1
=2a,命题D
n
=(n+1)a
n
正确. 当n=2时,D
2
=[*]=3a
2
,命题D
n
=(n+1)a
n
正确. 设n<k时,命题D
n
=(n+1)a
n
正确,对D
k
按第一列展开得 [*] =2aD
k-1
-a
2
D
k-2
, 按归纳假设D
k-1
=ka
k-1
,D
k-2
=(k-1)a
k-2
,从而 D
k
=2a(ka
k-1
)-a
2
(k-1)a
k-2
=(k+1)a
k
. 所以[*]n,命题D
n
=|A|=(n+1)a
n
正确.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Lu4777K
0
考研数学一
相关试题推荐
1
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
观察知道,此题为“0/0”型.但不能用洛必达法则求解.应该以去掉分子中的模符号“||”为化简方向.
(2008年试题,21)设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
根据《法律援助条例》规定,请求支付劳动报酬的,向()的法律援助机构提出申请。
治疗湿热黄疽可选用
痢疾初起治疗当忌
肢端肥大症患者血钙较高时常提示
实验室测定血清总钙的参考方法是
下列关于磁共振图像矩阵的叙述,正确的是
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?()
下面是某求助者MMPI-2的测验结果24项版本的HAMD量表,其因子数量为()。(A)2(B)3(C)5(D)7
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
纯粹从阅读角度看,今天我们的阅读数量是很可观的。我们每天看微博,看新闻客户端,看微信朋友圈,看QQ日志……这最终都能累积为每天的阅读量。碎片化的阅读,确实便利了信息获取,但若是从人文涵养的角度看,碎片化本身意味着不全面,再加上网络阅读的简化,人们由此实现的
最新回复
(
0
)