首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
admin
2019-07-16
140
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
1 因为 (A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
所以A与A
-1
合同,于是g(X)=X
T
AX与f(X)有相同的规范形. 2 对二次型g(X)=X
T
AX作可逆线性变换X=A
-1
Y,其中y=(y
1
,y
2
,…,y
n
)
T
,则g(X)=X
T
AX=(A
-1
Y)
T
A(A
-1
Y)=Y
T
(A
-1
)
T
AA
-1
Y=Y
T
A
-1
y,由此得知A与A
-1
合同,于是f(X)与g(X)必有相同的规范形. 解3设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
. 可见A与A
-1
的特征值中为正及为负的个数分别相同,因而二次型g(X)=X
T
AX与二次型f(X)=X
T
A
-1
X的标准形中系数为正和系数为负的项数分别相同,从而知g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/0NJ4777K
0
考研数学三
相关试题推荐
设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明
设求的值;
设A,B相互独立,只有A发生和只有B发生的概率都是,则P(A)______.
计算其中D为单位圆x2+y2=1所围成的第一象限的部分.
向直线上掷一随机点,假设随机点落入区间(一∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(一∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x的点得x分.试求得分X的分
设A是n阶实对称矩阵,证明:存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.
设z=f(x,y)二阶可偏导,且f(x,0)=l,f’y(x,0)=x,则f(x,y)=______.
设f(x)在(a,b)内可导,且(如图2.12),求证:f(x)在(a,b)恰有两个零点.
设常数k>0,函数在(0,+∞)内的零点个数为()
随机试题
向Excel工作表单元格里输入公式,其运算符有优先顺序,下列说法错误的是()
30岁男性患者,阵发脐周疼痛伴恶心,反复呕吐2天,尿量减少,无口渴。查体:血压90/60mmHg,轻度腹胀,偶见肠型,肠鸣音亢进。化验:血白细胞12.5×109/L,分叶82%,CO2CP12mmol/L。此患者存在哪种代谢紊乱
前列腺增生症最早出现的症状往往是
甲欲购买乙的汽车。经协商,甲同意3天后签订正式的买卖合同,并先交1000元给乙,乙出具的收条上写明为“收到甲订金1000元。”3天后,甲了解到乙故意隐瞒了该车证照不齐的情况,故拒绝签订合同。下列哪一个说法是正确的?
投资决策服务的投资机会研究的重点是()
下列关于仓库平面布置检查内容的说法正确的是()。
导游服务在旅游接待服务体系中的标志作用表现在它是()。
记者为有偿新闻说假话,是职业道德所不允许的;医生对特殊的病人说“假话”也是职业道德所不允许的。
张林是奇美公司的总经理,潘洪是奇美公司的财务主管。奇美公司每年生产的紫水晶占全世界紫水晶产品的2%。潘洪希望公司通过增加产量使公司利润增加。张林却认为:增加产量将会导致全球紫水晶价格下降,反而会导致利润减少。以下哪项最为恰当地指出了张林的逻辑推断
古希腊“百科全书式”的学者指的是()
最新回复
(
0
)