首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj. 二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
admin
2019-07-16
131
问题
设A为n阶实对称矩阵,秩(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
1 因为 (A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
所以A与A
-1
合同,于是g(X)=X
T
AX与f(X)有相同的规范形. 2 对二次型g(X)=X
T
AX作可逆线性变换X=A
-1
Y,其中y=(y
1
,y
2
,…,y
n
)
T
,则g(X)=X
T
AX=(A
-1
Y)
T
A(A
-1
Y)=Y
T
(A
-1
)
T
AA
-1
Y=Y
T
A
-1
y,由此得知A与A
-1
合同,于是f(X)与g(X)必有相同的规范形. 解3设A的全部特征值为λ
1
,λ
2
,…,λ
n
,则A
-1
的全部特征值为1/λ
1
,1/λ
2
,…,1/λ
n
. 可见A与A
-1
的特征值中为正及为负的个数分别相同,因而二次型g(X)=X
T
AX与二次型f(X)=X
T
A
-1
X的标准形中系数为正和系数为负的项数分别相同,从而知g(X)与f(X)有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/0NJ4777K
0
考研数学三
相关试题推荐
证明:r(AB)≤min{r(A),r(B)}.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设D={(x,y)|0<x<1,0<y<1),变量(X,Y)在区域D上服从均匀分布,令判断X,Z是否独立.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0)
设a>0,x1>0,且定义xn+1=(n=1,2,…),证明:存在并求其值.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,f’y(x,0)=x,则f(x,y)=______.
随机试题
目前我国开放式基金的估值频率为()。
患者,男性,70岁,右股骨粗隆间骨折,主要依据哪一项与股骨颈骨折鉴别
证券X期望收益率为0.11,贝塔值是1.5,无风险收益率为0.05,市场期望收益率为0.09。根据资本资产定价模型,这个证券()。
下列属于经济结构的有()。
财政收入分配职能主要是()。
小李是一名青少年中心的社会工作者,在工作过程中有时会遇到一些比较顽皮、逆反心理较强的青少年,针对这样的服务对象,小李应决定是否要为他们服务。从操作层面的社会工作价值观来看,他所面临的是()方面的问题。
调解委员会调解劳动争议贯彻自愿原则,具体包括()。
下列有关文学常识的表述错误的一项是()
洪罗市一项对健身爱好者的调查表明,那些称自己每周固定进行二至三次健身锻炼的人近两年来由28%增加到35%,而对该市大多数健身房的调查则显示,近两年来去健身房的人数明显下降。以下各项如果是真的,都有助于解释上述看来矛盾的断定,除了
[*]
最新回复
(
0
)