首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
admin
2016-10-21
95
问题
设A=αβ
T
,其中α和β都是n维列向量,证明对正整数k,A
k
=(β
T
α)
k-1
A=(tr(A))
k-1
A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
选项
答案
A
k
=(αβ
T
)
k
=[*]=α(β
T
α)(β
T
α)…(β
T
α)β
T
=(β
T
α)
k-1
A. β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
,而a
1
b
1
,a
2
b
2
,…,a
n
b
n
正好的A=αβ
T
的对角线上各元素,于是β
T
α =tr(A), A
k
=(tr(A))
k-1
A.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Pt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设a1=1,当n≥1时,,证明:数列{an}收敛并求其极限.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设D是xOy平面上以(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则(xy+cosx·siny)dxdy=________。
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)内有且仅有一个零点。
若f(x)在[0,a]上连续,a>0,且f"(x)≥0,证明:∫abf(x)dx≥a.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设,其中n≥1,证明:f(n)+f(n-2)=,n≥2
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
随机试题
Electricalenergy______fromthesuninaroundwayisthemostwidelyusedenergytoday.
质子治疗具有高线性能量传递(LET)射线的特点是
中华田园犬,雄性,2岁,昨晚外出未归,今晨发现患犬精神沉郁。呼吸急促,体温39℃。左胸侧壁中下部有创口,被血块、泥土及被毛所污染,创围略肿胀,按压有捻发音,胸侧位X线检查,肺野透明度增加,心脏前缘心尖部轮廓上抬。该病最可能的诊断是(
下列不属于感冒主要临床特征的是
下列()现象是小煤窑产生地面塌陷的主要特征。
下列不属于次级资料的是()。
运用股价平均线研判股价趋势的葛兰威尔法则()
某公司年终利润分配前的股东权益项目资料如下:公司股票的每股现行市价为25元。[要求]计算回答下述3个互不相关的问题:(1)计划按每10股送1股的方案发放股票股利,并按发放股票股利后的股数派发每股现金股利0.2元,股票股利的金额按现行市
苹果酸的结构简式为。下列说法正确的是()。
下列的立体图形是立方体中挖出一个圆锥台孔后形成的,如果从任一面剖开,以下哪一个不可能是该立体图形的截面?
最新回复
(
0
)