首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在χ=χ0某邻域有二阶连续导数,曲线y=f(χ)和y=g(χ)有相同的凹凸性.求证:曲线y=f(χ)和y=g(χ)在点(χ0,y0)处相交、相切且有相同曲率的充要条件是:f(χ)-g(χ)=o((χ-χ0)2)(χ→χ0).
设f(χ),g(χ)在χ=χ0某邻域有二阶连续导数,曲线y=f(χ)和y=g(χ)有相同的凹凸性.求证:曲线y=f(χ)和y=g(χ)在点(χ0,y0)处相交、相切且有相同曲率的充要条件是:f(χ)-g(χ)=o((χ-χ0)2)(χ→χ0).
admin
2016-10-21
57
问题
设f(χ),g(χ)在χ=χ
0
某邻域有二阶连续导数,曲线y=f(χ)和y=g(χ)有相同的凹凸性.求证:曲线y=f(χ)和y=g(χ)在点(χ
0
,y
0
)处相交、相切且有相同曲率的充要条件是:f(χ)-g(χ)=o((χ-χ
0
)
2
)(χ→χ
0
).
选项
答案
相交与相切即(χ
0
)=g(χ
0
),f′(χ
0
)=g′(χ
0
).若又有曲率相同,即 [*] 由二阶导数的连续性及相同的凹凸性得,或f〞(χ
0
)=g〞(χ
0
)=0或f〞(χ
0
)与g〞(χ
0
)同号,于是f〞(χ
0
)=g〞(χ
0
).因此,在所设条件下,曲线y(χ),y=g(χ)在(χ
0
,y
0
)处相交、相切且有相同曲率 [*]f(χ
0
)-g(χ
0
)=0,f′(χ
0
)-g′(χ
0
)=0,f〞(χ
0
)-g〞(χ
0
)=0. [*]f(χ)-g(χ)=f(χ)-g(χ)+[f(χ)-g(χ)]′[*](χ-χ) +[*][f(χ)-g(χ)]〞[*](χ-χ
o
)
2
+o(χ-χ
o
)
2
=o((χ-χ
0
)
2
) (χ→χ
0
). 即当χ→χ
0
时f(χ)-g(χ)是比(χ-χ
0
)
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Tt4777K
0
考研数学二
相关试题推荐
=________。
设f(x)是(-∞,+∞)上的非零函数,对任意x,y∈(-∞,+∞)有f(x+y)=f(x)f(y),且f’(0)=1,证明f’(x)=f(x)。
函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,则=________。
求f(x)=(x3+x)/(x2-1)arctanxe1/(x-2)的间断点,并判断其类型.
确定常数a,b,使得ln(1+2x)+ax/(1+bx)=x+x2+σ(x2).
求二元函数f(x,y)=x2(2+y2)+ylny的极值。
设变换,求常数a.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
(2010年试题,9)三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0通解为y=__________.
随机试题
A.BusinessmanagerYouwillberesponsibleforourglobalbusinesswithinspecificcountriesandwillhaveagoodunderst
阿托品的临床应用
A.庆大霉素B.头孢噻呋C.磺胺甲噁唑D.恩诺沙星E.林可霉素影响细菌细胞壁合成的是
热射病的体温一般大于
对军人遗属发放抚恤金的第一顺序人包括其( )。
案例一般资料:求助者,女性,44岁,已婚,公司职员。案例介绍:求助者在一家公司工作了十余年,丈夫是中学教师,夫妻感情好,儿子上高中,学习成绩优异。近两年公司效益差,一直没有涨工资。求助者的父亲半年前因癌症住院治疗,花了不少钱,求助者为父
根据以下资料,回答以下题。2013年7月~2014年4月,我国进口总值与出口总值相差最大和最小的月份分别是()。
改革要在____________公平开放便利的市场环境上多下功夫,要在体恤民生上见真情。经济调整期,不能不顾小微企业实际承受能力,无节制地追求税收增长率。一项不期而至的小微企业普惠型免税政策,是炎炎烈日中吹来的清凉之风,是充满温情和体恤的善政,从这个意义上
头颈部淋巴结检查的一般顺序应为下列哪项正确()。
Whenyougotobed,isitbecauseyou’retiredorbecauseyouneedtogetupatacertaintimeandwanttomakesureyougeteno
最新回复
(
0
)