首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x2x3化为标准形,并给出所施行的正交变换。
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x2x3化为标准形,并给出所施行的正交变换。
admin
2018-12-19
37
问题
用正交变换将二次型f(x
1
,x
2
,x
3
)=x
1
2
一2x
2
2
一2x
3
2
一4x
1
x
2
+4x
1
x
3
+8x
2
x
3
化为标准形,并给出所施行的正交变换。
选项
答案
二次型的矩阵为A=[*],特征多项式为 |λE一A|=[*]=(λ一2)
2
(λ+7), 矩阵A的特征值为λ
1
=一7,λ
2
=λ
3
=2。 由(λ
i
E一A)x=0(i=1,2,3)解得特征值λ
1
=一7和λ
2
=λ
3
=2对应的特征向量分别为 α
1
=(1,2,一2)
T
,α
2
=(一2,1,0)
T
,α
3
=(2,0,1)
T
, 由于实对称矩阵的属于不同特征值的特征向量正交,所以先将α
2
,α
3
正交化,即 β
2
=α
2
=(一2,1,0)
T
,β
3
=α
3
一[*] 再将α
1
,β
2
,β
3
单位化,即 [*] 那么令 Q=(γ
1
,γ
2
,γ
3
)=[*] 则二次型x
T
Ax在正交变换x=Qy下的标准形为一7y
1
2
+2y
2
2
+2y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/0Vj4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在ξ∈(0,3),使f’’(ξ)=0.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt当F(x)的最小值为f(a)一a2一1时,求函数f(x).
设函数f(x)具有一阶导数,下述结论中正确的是().
(2009年)设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=_______.
(2002年)矩阵A=的非零特征值是_______.
(2008年)设A=,则在实数域上与A合同的矩阵为【】
求函数F(x)=的间断点,并判断它们的类型。
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
已知则当时,=______。[img][/img]
(04年)设f(x)=(I)证明f(x)是以π为周期的周期函数.(Ⅱ)求f(x)的值域.
随机试题
《就任北京大学校长之演说》在写作方面的特点。
某防疫站为了评价不同燃料燃烧对室内空气质量的影响,拟分别测定燃煤、燃气、燃柴家庭室内SO2含量,应采用的气体采集法为
A.牙源性颌骨囊肿B.发育性囊肿C.阻塞性囊肿D.牙源性肿瘤E.孤立性囊肿血外渗性囊肿属于
患者,男,68岁。2型糖尿病8年,胰岛素6U治疗,餐前30分钟,Htid。最合适的注射部位是()。
甲建设单位与施工单位订立了施工合同,甲建设单位负责建筑材料的采购,于是甲建设单位向乙材料生产厂家发函要求购买无机气硬性胶凝材料,发出一份传真内容如下:本公司希望向你公司购买建筑石膏20t(价格为5600元/t),建筑石灰42t(价格为2400/t),在本单
(2012年卷二第15题)2008年,何某在一次意外事故中下落不明。2011年,经何某妻子申请,人民法院宣告何某死亡,其名下的财产也被继承。2012年,何某回到家中。原来何某在该次事故中被救起,后一直在其他城市打工,但未与家人联系。根据民法通则及相关规定,
吴某,女性,54岁,工人,小学文化,已婚。自我陈述:睡眠差。全身不适伴发冷两个多月。在两个月前,我也不知道怎么回事就出现头痛、头晕、睡眠差,没力气、手酸、胃口不好,去医院看,做了很多检查,也没有发现什么问题。以后这些不舒服更加厉害,吃过中药
同一个和弦音之间上方或下方二度(大、小)关系的外音称为()。
甲、乙和丙,一位是山东人,一位是河南人,一位是湖北人。现在只知道:丙比湖北人年龄大,甲和河南人不同岁,河南人比乙年龄小。由此可以推知:
Ourape-menforefathershadnoobviousnaturalweaponsinthestruggleforsurvivalintheopen.Theyhadneitherthepowerfult
最新回复
(
0
)