首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵B=相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
已知矩阵B=相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
admin
2016-06-30
64
问题
已知矩阵B=
相似于对角矩阵A.(1)求a的值;(2)利用正交变换将二次型X
T
BX化为标准形,并写出所用的正交变换;(3)指出曲面X
T
BX=1表示何种曲面.
选项
答案
(1)由B相似于对角阵,知对应于B的二二重特征值6的线性无关特征向量有2个,[*]r(6E-B)=1,[*]a=0: (2)二次型f=X
T
BX的矩阵为A=[*](B+B
T
)=[*],正交矩阵P=[*],可使P
T
AP=[*],故f在正交变换X=PY下化成的标准形为f=6y
1
2
+7y
2
2
-3y
3
2
;(3)单叶双曲面.
解析
转载请注明原文地址:https://kaotiyun.com/show/t9t4777K
0
考研数学二
相关试题推荐
确定a,b,使得当x→0时x-(a+bcosx)sinx为阶数尽可能高的无穷小.
设f(x)=在x=0处连续,则a=________.
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量.
设方程exy+y2=cosx确定y为x的函数,则=________。
已知f(x)二阶可导,且,f(1)=0试证:在(0,1)内至少存在一点ε,使得f(ε)=0.
设f(x)在(-∞,+∞)内有定义,对任意x恒有f(x+1)=2f(x),且当x∈[0,1]时,f(x)=x(1-x2),求f(x)在[-1,0]与[1,2]上的表达式。
下列各题中均假定f’(x0)存在,按照导数定义,求出下列各题中A的值。
设y=y(x)是区间[-π,π]内过的光滑曲线,当-π<x<0时,曲线上任一点处的法线都过原点,当0≤x≤π时,函数y(x)满足y"+y+x=0,求y(x)的表达式。
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
设函数f(x)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量y的线性主部为0.1,则f’(1)=_______.
随机试题
1897年,康有为出版了( ),为变法提供了思想理论依据。
如果产品的单价与单位变动成本上升的百分率相同,其他因素不变,则保本销售量()
下列关于信用利差的说法中,正确的有()。Ⅰ.信用利差随着经济周期(商业周期)的扩张而缩小Ⅱ.信用利差随着经济周期(商业周期)的收缩而扩张Ⅲ.信用利差随着经济周期(商业周期)的扩张而扩张Ⅳ.信用利差随着经济周期(商业周期)的缩小而缩小
儿童期的性心理咨询一般包括的内容有()。
2014年下半年全国租赁贸易进出口总额约为多少亿美元?
新时期党在相当长一个时期内面临的最突出的两大历史性课题:一是__________;二是__________。
以向生产的广度发展为特征的企业扩大再生产属于()。
For many years, the principle goal of computer(73)was to write short pieces of code that would execute quickly. The(74)needed to
SusanCarter
TheblunderofArgentina’sgoaliecostthemthegameinthematchagainstBrazil.
最新回复
(
0
)