首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设C1和C2是两个任意常数,则函数y=ex(C1 cos2x+C2 sin2x)+sinx是二阶常系数线性微分方程( )的通解.
设C1和C2是两个任意常数,则函数y=ex(C1 cos2x+C2 sin2x)+sinx是二阶常系数线性微分方程( )的通解.
admin
2019-03-11
128
问题
设C
1
和C
2
是两个任意常数,则函数y=e
x
(C
1
cos2x+C
2
sin2x)+sinx是二阶常系数线性微分方程( )的通解.
选项
A、y’’一2y’+5y=4cosx一2sinx
B、y’’一2y’+5y=4sinx一2cosx
C、y’’一5 y’+2y=4cosx一2sinx
D、y’’一5y’+2y=4sinx一2cosx
答案
B
解析
由二阶常系数线性微分方程通解的结构知,e
x
cos2x与e
x
sin2x是二阶常系数齐次线性微分方程y’’+ay’+by=0两个线性无关的特解.从而特征方程λ
2
+aλ+b=0的两个特征根应分别是λ
1
=1+2i,λ
2
=1—2i,由此可得λ
2
+aλ+b=(λ一1—2i)(λ一1+2i)=(λ一1)
2
一(2i)
2
=λ
2
—2λ+1+4=λ
2
—2λ+5,即a=一2,b=5.
由二阶常系数线性微分方程通解的结构又知sinx应是非齐次方程y’’一2y’+5y=f(x)的一个特解,故f(x) =(sinx)’’一2(sinx)’+5 sinx=4sinx一2cosx.
综合即得所求方程为y’’一2y’+5y=4sinx一2cosx.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/0XP4777K
0
考研数学三
相关试题推荐
设,则(P-1)2016A(Q2011)-1=()
已知β1,β2是非齐次线性方程组Aχ=b的两个不同的解,α1,α2是对应齐次线性方程组Aχ=0的基础解系,k1,k2为任意常数,则方程组Aχ=b的通解(一般解)是【】
向量组(Ⅰ)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有()
设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F’(2)等于()
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
已知离散型随机变量X服从参数为2的泊松分布,即P{x=k}=,k=0,1,2,…,则随机变量Z=3X-2的数学期望EZ=________.
设一次试验中,出现事件A的概率为p,则n次试验中A至少发生一次的概率为________,A至多发生一次的概率为________.
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
求微分方程的特解.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
随机试题
近年来国际上实行贸易保护的非关税措施主要包括()
与城市社区相比,农村社区具有的共同特点有【】
A.右肾为命门B.命门为两肾的总称C.两肾之间为命门D.命门为肾间动气E.命门为精室《难经》认为
依照《安全生产法》规定,生产经营单位的主要负责人和安全生产管理人员必须具备与本单位所从事的生产经营活动相应的()。
确立职业化管理的主要依据是()
以下数据结构中,不属于线性数据结构的是()。
A、正确B、错误B
Shoppinghasbecomeaprivateaffair.Obviousconsumptiondoesnotlookgoodduringadepression,whichexplainswhysomanyof
December13th,2005DearSirs,Iamveryhappytoapplyforthepositionofsecretary,whichyouadvertisedinChinaDaily
A、Eliminatingtheoriginalvegetationfromthebuildingsite.B、Markingthehousesinanareasimilartooneanother.C、Deciding
最新回复
(
0
)