首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
admin
2021-11-25
33
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵。
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有 A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) 于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量; 无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/0Zy4777K
0
考研数学二
相关试题推荐
二元函数f(x,y)在点(xo,yo)处的下面4条性质:(I)连续;(Ⅱ)两个偏导数连续;(Ⅲ)可微;(Ⅳ)两个偏导数存在,则().
设函数z=z(x,y)由方程F=0确定,其中F为可微函数,且F2’≠0.则()
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是().
下列微分方程中,以y=c1ex+c2e﹣xcos2x+c3e﹣xsin2x(c1,c2,c3为任意常数)为通解的是()
设z=z(x,y)由方程所确定,其中F是任意可微函数,则=______。
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
设向量组,α1,α2……αr是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解.证明:向量组β,β+α1,β+α2,…,β+αr线性无关.
要使都是线性方程组AX=0的解,只要系数矩阵A为()
一容器在开始时盛有盐水100升,其中含净盐10公斤.现以每分钟3升的速度注入清水,同时以每分钟2升的速度将冲淡的溶液放出.容器中装有搅拌器使容器中的溶液保持均匀,求过程开始后1小时溶液的含盐量.
随机试题
在运用资产基础法进行评估时,资产基础法的一个难点是()。
发送者方面容易出现障碍的情况主要有哪些?
态度的特性不包括()
It’sessentialthateverychild______thesameeducationalopportunity.
我国中小学常用的德育方法主要有哪些?
根据《药品管理法》和《药品管理法实施条例》,关于药品生产许可的说法正确的是()。
唐朝的“三司推事”是会审制度的重要开端,下列关于唐朝会审制度的说法中哪一项是不正确的?()
诱导空调系统优点包括( )
记正三角形的内切圆半径与其外接圆半径之比为m,正方体内切球的半径与外接球的半径之比为n,则m,n分别为().
ThemostfamouspainterinVictoria’shistoryisEmilyCarr.Whenshewasachild,shediscoveredthatwalkinginthewoods【1】mo
最新回复
(
0
)