首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
admin
2021-11-25
92
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵。
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有 A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) 于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量; 无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/0Zy4777K
0
考研数学二
相关试题推荐
设A是4×3矩阵,且r(A)=3,则下列命题错误的是()
设z=z(x,y)由方程=0所确定,其中F是任意可微函数,则=__________。
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=_________.
设χ→0时,f(χ)=eχ-为χ的三阶无穷小,求a,b.
微分方程dy/dx=y/(x+y4)的通解是.
已知三阶矩阵A的三个特征值为1,2,3,则(A-1)*的特征值为_________.
设二次型f(χ1,χ2,χ3)=χTAχ=3χ12+aχ22+3χ33-4χ1χ2-8χ1χ3-4χ2χ3,其中-2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
证明:矩阵Q可逆的充要条件为αTA-1α≠b.
某人的食量是2500卡/天(1卡=4.1868焦),其中1200卡/天用于基本的新陈代谢。在健身运动中,他所消耗的为16卡/千克/天乘以他的体重。假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化。
随机试题
防风长于桑叶长于
在DDN网中,速率小于()kbiffs称为子速率。
孙辈的父母因故离开家长只留下祖辈和孙辈的家庭是()
与吸附力关系最密切的因素是
1型糖尿病的临床特点是
张某与厂方的纠纷可按( )处理。可变更合同在变更前属于( )的合同。
下列各项中,税务机关有权核定纳税人应纳税额的情形有()。
在某基金公司的晨会上,投资经理A提到:“可以通过投资股票、债券、期货等来分散基金的非系统性风险,且也可一定程度上降低系统性风险。”;投资经理B补充道:“系统性风险主要受宏观因素影响,应该加强对经济、政治和法律等因素的关注。”关于两人的说法,下列表述正确的是
WhatanimaldoesRepublicPartytakeasitssymbol?
已知总体X服从参数为λ的泊松分布,X1,X2,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为+(2-3a)S2是λ的无偏估计,则a=______。
最新回复
(
0
)