首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
admin
2021-11-25
30
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵。
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有 A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
) 于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量; 无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/0Zy4777K
0
考研数学二
相关试题推荐
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
确定常数a与b的值,使得
设微分方程=2y-x,在它的所有解中求一个解y=y(x),使该曲线y=y(x)与直线x=1,x=2及x轴围成的图形绕x轴旋转一周所生成的旋转体体积最小.
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:(Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A);(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵;(Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
设0≤a<b,f(χ)在[a,b]上连续,(a,b)内可导,证明在(a,b)内存在三点χ1,χ2,χ3使f′(χ)=(b+a)
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.(Ⅰ
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρX,Y=1,则().
证明:矩阵Q可逆的充要条件为αTA-1α≠b.
微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b为常数)().
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进入大气层开始燃烧的前3s内,减少了体积的,问
随机试题
下列情形中,实用新型专利审请丧失新颖性的是()
酶活力单位(U)的定义中所规定的时间单位和底物单位分别是
成年人腹股沟管的长度应为
患儿,男,8岁,眼睑水肿4天伴尿少,近2日尿呈浓茶色,患儿无尿频、尿急、尿痛。患儿3周前曾患上呼吸道感染。查体:T36.2℃,R26次/分,P100次/分,BP130/90mmHg,神清,双眼睑及颜面水肿,双足背轻度非凹陷性水肿,心肺(一),腹软,肝、脾肋
女性患者,42岁,以“双手掌指关节、近端指间关节及腕关节疼痛、肿胀5个月,加重伴低热2用”来诊,可能的诊断是
排石颗粒主治哪种淋证
葡萄糖被全部主动重吸收的部位是
A.心气亢盛B.宗气外泄C.心阳不足D.心气衰竭E.心肺气绝
下列有关民事诉讼简易程序的表述哪些是不正确的?()。
党的十八大明确指出:“经济体制改革的核心问题是处理好政府和市场的关系,必须更加尊重市场规律,更好发挥政府作用。”政府的职能是()
最新回复
(
0
)