首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
admin
2021-11-25
145
问题
设f(x)二阶可导,f(0)=f(1)=0且
.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,[*], 由闭区间上连续函数最值定理可知,f(x)在[0,1]上取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0 根据泰勒公式, [*] 所以存在ξ∈(0,1),使得f"(ξ)≥8.
解析
在使用泰勒中值定理时,若已知条件中给出某点的一阶导数,则函数在该点展开;若结论中是关于某点的一阶导数,则在该点展开;若既为给出某点的一阶导数的条件,结论中又不涉及某点的一阶导数,往往函数在区间的中点处展开。
转载请注明原文地址:https://kaotiyun.com/show/0ay4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,,其对应的特征向量a1,a2,a3,令P=(2a3,-3a1,-a2),则P-1(A-1+2E)P=_________.
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
函数y=lnx在区间[1,n]上满足拉格朗日中值定理的ξ记为ξn,则=_______.
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
下列关于向量组线性相关性的说法正确的个数为()①若α1,α2……αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1,+knα2+…+knαn=0。②如果α1,α2……αn线性无关,则对任意不全为零的常数k1,k2,…,kn,都
下列说法正确的是().
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=_________
设y=f(χ)=(1)讨论f(χ)在χ=0处的连续性;(2)f(χ)在何处取得极值?
x=Φ(y)是y=f(x)的反函数,f(x)可导,且f’(x)=,f(0)=3,求Φ"(3).
设且f’(0)存在,求a,b.
随机试题
考生文件夹下存在一个数据库文件“samp2.accclb”,里面已经设计好两个表对象住宿登记表“tA”和住房信息表“tB”,其中“tA”和“tB”表中“房间号”的前两位为楼号。试按以下要求完成设计:(1)创建一个查询,查找楼号为“01”的客人记录
风湿热的一般表现中不包括
属于胃肠动力变化而影响药物吸收的是
痰蒙心神证的表现应除外哪项()
链斗式挖泥船顺流施工时其尾锚抛设应()。
江老师十分注重自我学习,却经常不参加学校的校本研修活动。江老师的行为()
2016年6月下旬,英国举行了脱欧公投,“脱欧”是指脱离()。
马克思主义是科学,从根本上说在于它()。
关于法律权利与法律义务的关系,正确的观点有
Childrengoingtoschoolmusthaveachanceto_____excessphysicalenergy;childrenevenmorethanadultsrequireandenjoyphys
最新回复
(
0
)