首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
admin
2021-11-25
81
问题
设
求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
选项
答案
[*]得到矩阵A的特征值为λ
1
=1-α,λ
2
=a,λ
3
=1+a (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化, λ
1
=1-α时,由[(1-a)E-A]X=0得ξ
1
=[*] λ
2
=a时,由(aE-A)X=0,得ξ
2
=[*] λ
3
=1+a时,由[(1+a)E-A)X=0,得ξ
3
=[*] [*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解的向量,故矩阵A不可以对角化。 (3)当a=[*]的基础解系只含有一个线性无关的解向量,故A不可以对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/wZy4777K
0
考研数学二
相关试题推荐
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
设函数f(χ)在(-∞,+∞)上连续,其导函数的图形如图所示,则f(χ)有().
设f(x)在[1,+∞)上连续且可导,若曲线y=f(x),直线x=1,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为且f(2)=,求函数y=f(x)的表达式.
设f(χ)为连续函数,且χ2+y2+z2=∫χyf(χ+y-t)dt,则=_______.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设三阶矩阵A的特征值为-1,1,2,其对应的特征向量为α1,α2,α3,令P=(3α2,-α3,2α1),则P-1AP等于().
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系【】
微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b为常数)().
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
随机试题
电力线路安全条件包括导电能力、力学强度、绝缘、间距、导线连接、线路防护、过电流保护、线路管理等。下列关于电力线路安全条件的说法中,正确的是()。
A.肝功能损害B.肾功能损害C.甲状腺功能减退D.粒细胞减少丙硫氧嘧啶治疗甲状腺功能亢进症的常见副作用是
关于幼儿期的划分正确的是
适用于如图所示接种方法的疫苗是
某工程进度计划执行过程中,发现某工作出现了进度偏差。经分析该偏差仅对后续工作有影响而对总工期无影响。则该偏差值应()。
Excel中,函数COUNTIF的必选参数有()。
分部分项工程量清单包括()、项目名称、项目特征、计量单位和工程量。
忌讳绿色的国家是()。
材料: 电脑的普及,使文字书写急剧退场。用惯了纸笔的中老年人,还在挣扎着试图挽住书写的臂膀。而年轻一代。已然习惯了无纸化的生存。提笔忘字,渐成常态。书法之美,只在少数书法家手中流连。在手机和电子信箱越来越便捷的当下社会,能够收到一封手写的信件已是一种幸
简述决策的程序。
最新回复
(
0
)