设D是曲线y=2x一x2与x轴围成的平面图形,直线y=kx把D分成为D1和D2两部分(如图),若D1的面积S1与D2的面积S2之比.S1:S2=1:7.求平面图形D1的周长以及D1绕y轴旋转一周所得旋转体的体积.

admin2020-01-15  41

问题 设D是曲线y=2x一x2与x轴围成的平面图形,直线y=kx把D分成为D1和D2两部分(如图),若D1的面积S1与D2的面积S2之比.S1:S2=1:7.求平面图形D1的周长以及D1绕y轴旋转一周所得旋转体的体积.

选项

答案由方程组[*]可解得直线y=kx与曲线y=2x一x2有两个交点(0,0)和(2一k,k(2一k)),其中01:S2=1:7,知[*]于是k=1,相应的交点是(1,1).注意这时D1的边界由y=x上0≤x≤1的线段与曲线y=2x—x2上0≤x≤1的弧构成,从而D1的周长[*]于是D1绕y轴旋转一周所得旋转体的体积[*][*] [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/QXA4777K
0

最新回复(0)