首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).
[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).
admin
2019-05-10
48
问题
[2005年] 设矩阵A=[a
ij
]
3×3
满足A
*
=A
T
,其中A
*
为A的伴随矩阵,A
T
为A的转置矩阵,若a
11
,a
12
,a
13
为3个相等的正数,则a
11
为( ).
选项
A、√3/3
B、3
C、1/3
D、√3
答案
A
解析
出现第l行3个相等的元素,自然想到用行列式展开定理.用a
11
的表达式表示∣A∣,再利用命题2.1.2.8即可求出a
11
解一 显然矩阵A满足命题2.1.2.8中的三个条件,因而由该命题即得∣A∣=1.将∣A∣按第1行展开得到1=∣A∣=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
11
2
+a
12
2
+a
13
2
=3a
11
2
,故以a
11
=√3/3.
仅(A)入选.
解二 由A
*
=A
T
,即
,其中A
ij
为∣A∣中元素
a
ij
(i,j=1,2,3)的代数余子式,得a
ij
=A
ij
(i,j=l,2,3).将∣A∣按第1行展开,得
∣A∣=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
11
2
+a
12
2
+a
13
2
=3a
11
2
>0.
又由A
*
=A
T
得到∣A
*
∣=∣A∣
3-1
=∣A
T
∣=∣A∣,即∣A∣(∣A∣一1)=0,而∣A∣>0,
故∣A∣一1=0,即∣A∣=1,则3a
11
2
=1,因a
11
>0,故a
11
=
=√3/3.仅(A)入选.
转载请注明原文地址:https://kaotiyun.com/show/0jV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
证明:用二重积分证明
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A为m×n阶矩阵,且r(A)=m<n,则().
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设。计算行列式|A|;
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________.
随机试题
Whatisbeingadvertised?
给定资料1.正确对待来自组织、来自社会、来自群众的监督,习惯在“放大镜”和“聚光灯”下工作和生活,是对党员干部党性修养和组织观念的检验,也是新时代党员干部干事创业的内在要求。移动互联网时代,工作的一点一滴、生活的一言一行,都处于“放大镜”和“聚光灯”之
张景岳论耳鸣:中衰无火者多张景岳论耳鸣:饮酒味厚,素多痰火者多
认真负责,主动热情,服务周到,实事求是,讲究信誉,依法销售,这是药品严谨准确,安全迅速,文明装卸,认真负责是做好药品
一级建造师应具备()等执业技术能力。
衡量通货膨胀的指标是物价指数。()
下列不属于期货投机的准备工作的是()。
立体农业是指利用生物间的相互关系,兴利避害,为了充分利用空间把不同生物种群组合起来,多物种共存、多层次配置、多级物质能量循环利用的立体种植、立体养殖或立体种养的农业经营模式。根据上述定义,以下不属于立体农业的是()。
TASKONE—THETOPICOFTHETALK•Forquestions13-17,matchtheextractswiththetopics,listedA-H.•Foreachextract,decidew
Trafficlightsarecrucialtoolsforregulatingtrafficflow.Theyarenot,however,perfect.Driversexchangethegridlockthat
最新回复
(
0
)