首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2016-10-24
62
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)一f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f"(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
=2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
—2. 原方程为[xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycosxdx+sinxdy)+(一ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy一2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/0oH4777K
0
考研数学三
相关试题推荐
指出下列算式中的错误所在,写出正确的算式及计算结果:
[*]
求通过点A(3,0,0)和B(0,0,1)且与xOy面成π/3角的平面方程.
用幂级数求解下列微分方程的初值问题:(1)yˊ-y2-x3=0,y|x=0=1/2;(2)y〞+ycosx=0,y|x=0=1,yˊ|x=0=0;(3)y〞+xyˊ+y=0,y|x=0=1,yˊ|x=0=1;(4)xy〞+yˊ+xy=0,y|x=0
设有曲面积分,其中∑为将原点包围在其内部的光滑闭曲面,n=(cosα,cosβ,cosγ)为∑上的动点M处的外法向量,r=|OM|.(1)如果∑1与∑2为满足上述条件的两张曲面,∑1位于∑2的内部,并记在∑1和∑2上的上述积分值分别为I1和I2,证明I1
计算曲面积分,∑为抛物面z=2-(x2+y2)在xOy面上方的部分,f(x,y,z)分别如下:(1)f(x,y,z)=1,(2)f(x,y,z)=x2+y2.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则().
设n元线性方程组Ax=b,其中A=n×n,x=,b=证明行列式丨A丨=(n+1)an.
随机试题
超声波在人体组织传播过程的声衰减与下列哪项无关
羟基ν-OH羰基νC=O
在行政许可的一般程序中,()质量直接影响行政许可的质量。
塔、容器的检查封闭是完成塔、容器的全面检查并符合要求后,加装规定垫片、封闭人孔,按要求顺序和力矩拧紧连接螺栓的过程。检查封闭应经()确认。
儿童一进商场就被漂亮的玩具吸引,儿童在这一刻出现的心理现象是()。
讲课时,教师的语调要()
虚拟局域网在功能和操作上与传统局域网基本相同,()。
有一个生活非常艰苦的孤寡老人,可以享受低保政策,但是他和一个小狗相依为命,如果让小狗和他分开,他死活不干,你是负责低保评定的工作人员,你该怎么处理?
下列存储保护方案中,不是针对“地址越界”访存违例的是()。
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions41-45,choosethemostsuitableonefromthelist(A、B、C、
最新回复
(
0
)