设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明: |f(x)|≤∫ab|f’(x)|dx(a<x<b)

admin2018-01-23  27

问题 设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
|f(x)|≤ab|f’(x)|dx(a<x<b)

选项

答案因为[*]且f(a)=f(b)=0,所以 [*]两式相加得|f(x)|≤[*]∫ab|f’(x)|dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/0yX4777K
0

最新回复(0)