首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a是常数,则级数( )
设a是常数,则级数( )
admin
2019-01-19
92
问题
设a是常数,则级数
( )
选项
A、绝对收敛。
B、条件收敛。
C、发散。
D、敛散性与口的取值有关。
答案
C
解析
由于
收敛,则
收敛,但
发散,则
发散,故选C。
转载请注明原文地址:https://kaotiyun.com/show/12P4777K
0
考研数学三
相关试题推荐
设有4阶方阵A满条件|+A|=0,AAT=2I,|A|<0,其中I是4阶单位矩阵.求A的伴随矩阵A*的一个特征值.
曲线直线y=2及y轴所围的平面图形绕x轴旋转一周所成的旋转体体积为___________.
设n元(n>3)线性方程组Ax=b,其中式问a满足什么条件时,该方程组有解、无解?有唯一解时求出x1;有无穷多解时,求其通解.
微分方程xlnxdy+(y—lnx)dx=0满足条件y(e)=1的解为_________.
已知某商品的需求量Q和供给量S都是价格p的函数:其中常数a>0,b>0,又价格p是时间t的函数,且满足假设当t=0时价格为1,试求极限,并解释此极限值的含义.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
由曲线y=x(x一1)(2一x)与x轴围成平面图形的面积为().
以下4个命题,正确的个数为()①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(-∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且③若∫-∞+∞f
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
随机试题
简述室性期前收缩(早搏)的心电图特征。
患者男性,58岁。患者半年前登山时出现心前区疼痛,为压迫样,持续1~2分钟并向左肩、左背放射,停止活动自行缓解。以后每当劳累和工作紧张均可诱发,含硝酸甘油可缓解。一月前心前区疼痛发作频繁并加重,发作时间较前延长,轻微活动就可诱发,含硝酸甘油效果欠佳。发现高
引起手足口病的病原体是
早期诊断化脓性关节炎,最有确诊价值的检查是
男性不育的病因病机,除了
彼得原理指的是在通常的层级组织中,在一个岗位工作出色的职员往往会被提拔到上一层级的岗位上,直到他被提拔到一个不能胜任的岗位为止,即每一个职员都有可能晋升到不能胜任的层级。根据上述定义,下列体现彼得原理的是:
_____________。对于自然景观,可以有观赏角度变化后的不同观感,对于讲解景点历史文化而言,也可以有不同角度、不同表达方式,但却不能用野史等段子扭曲甚至杜撰景观内涵,这不是一个合格的导游应该做的,也不利于文化旅游环境的培育,更违背了游客旅游的初衷。
脊髓中受到损害的神经依靠自身不能自然地再生,即使在神经生长刺激剂的激发下也无法再生。最近发现,其原因是脊髓中存在着抑制神经生长的物质。现在已经开发出降低这种物质的活性的抗体。显然,在可以预见的未来,神经修复将是一项普通的医疗技术。如果以下哪项陈述为
社会主义初级阶段不是泛指任何国家进人社会主义都会经历的起始阶段,而是特指我国生产力落后、商品经济不发达条件下建设社会主义必然要经历的特定阶段。第一次提出我国社会主义制度还处于初级阶段的重要文件是
Whydidthewriterbeginthispiecewithquestion?Themostimportantroomtoleavealightburninginisthe______.
最新回复
(
0
)