设fn(x)=x+x2+…+xn(n≥2). (1)证明:方程fn(x)=1有唯一的正根xn; (2)求

admin2022-08-19  54

问题 设fn(x)=x+x2+…+xn(n≥2).
(1)证明:方程fn(x)=1有唯一的正根xn
(2)求

选项

答案(1)令φn(x)=fn(x)-1,因为φn(0)=-1<0,φn(1)=n-1>0,所以φn(x)在(0,1)[*](0,+∞)内有一个零点,即方程fn(x)=1在(0,+∞)内有一个根. 因为φ′n(x)=1+2x+…+nxn-1>0,所以φn(x)在(0,+∞)内单调增加,所以φn(x)在(0,+∞)内的零点唯一,所以方程fn(x)=1在(0,+∞)内有唯一正根,记为xn. (2)由fn(xn)-fn+1(xn+1)=0,得(xn-xn+1)+(xn2-xn+12)+…+(xnn-xn+1n)=xn+1n+1>0,从而xn>xn+1,所以{xn)n=1 单调减少,又xn>0(n=1,2,…), [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/13R4777K
0

相关试题推荐
最新回复(0)