首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
admin
2022-10-09
48
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;证明:|f’(x)|≤2a+b/2.
选项
答案
f(x)=f(c)+f’(c)(x-c)+f’(ξ)/2!(x-c)
2
,其中ξ介于c与x之间,分别令x=0,x=1,得f(0)=f(c)-f’(c)c+f"(ξ
1
)/2!c
2
,ξ
1
∈(0,c),f(1)=f(c)-f’(c)(1-c)+f"(ξ
2
)/2!(1-c)
2
,ξ
2
∈(0,c),两式相减,得f’(c)=f(1)-f(0)+f"(ξ
1
)/2!c
2
-f"(ξ
2
)/2!(1-c)
2
,利用已知条件,得|f’(c)|≤2a+b/2[c
2
+(1-C)
2
],因为c
2
+(1-c)
2
≤1,所以|f’(c)|≤2a+b/2.
解析
转载请注明原文地址:https://kaotiyun.com/show/17R4777K
0
考研数学三
相关试题推荐
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.计算PTDP,其中[*]
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
设3元实二次型f(x)=xTAx经正交变换x=Cy化成是Ax=0的解向量.写出该实二次型d(x)的表达式.
已知A是3阶的实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.用正交变换x=Py化二次型xTAx为标准形,并写出所用的正交变换;
已知A是3阶的实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求α和二次型xTAx表达式;
设矩阵求矩阵P,使(AP)T(AP)为对角矩阵.
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值;
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
(1)证明当|x|充分小时,不等式0≤tan2x-x2≤x4成立;(2)设求
随机试题
游戏说
除另有规定外,散剂的含水量不得超过()
某企业拟投资一个项目,估算总投资在2000万元,预计年销售收入390万元,税后财务内部收益率(IRR)为13.2%。该项目存在两个风险变量,即产品销售价格和关键原料价格可能与预期有所不同。产品预期价格估计值为3100元/吨,该关键原料价格估计值为600元/
某投资项目在运营期的第4年的利润总额为350万元,总成本费用为1600万元(其中的财务费用只考虑利息支出),经营成本为1200万元,折旧和摊销费用合计280万元,则运营期第4年的利息备付率为()。
根据《建设工程质量管理条例》,()依法对建设工程质量负责。
在一堆桃子旁边住着5只猴子。深夜,第一只猴子起来偷吃了一个,剩下的正好平均分成5份,它藏起自己的一份,然后去睡觉。过了一会儿,第二只猴子起来也偷吃了一个,剩下的也正好平均分成5份,它也藏起自己的一份,然后去睡觉。第三、四、五只猴子也都依次这样做。问那堆桃子
有一类分数,每个分子与分母的和是100,如果分子减K,分母加K,得新的分数约分后等于,其中K是正整数,则该类分数中分数值最小的是()。
某消费者具有效用函数U(X,Y)X和Y的单位价格均为4元,该消费者的收入为144元。试问:(1)为使消费者的效用最大化,消费者对X和Y的需求应该各为多少单位?(要求写出最优化问题,然后求解。)(2)消费者的总效用是多少?每单位货币的边际效用
属于无偿民事法律行为的有()。
新中国成立,尤其是土地制度的改革完成后,我国国内的主要矛盾已转变为
最新回复
(
0
)