首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β2=(1,2,-1,a)T. (I)求矩阵A; (Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β2=(1,2,-1,a)T. (I)求矩阵A; (Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的
admin
2018-12-21
31
问题
已知A,B均是2×4矩阵,其中
Ax=0有基础解系α
1
=(1,1,2,1)
T
,α
2
=(0,-3,1,0)
T
;
Bx=0有基础解系β
1
=(1,3,0,2)
T
,β
2
=(1,2,-1,a)
T
.
(I)求矩阵A;
(Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的值及非零公共解.
选项
答案
(I)记C=(α
1
,α
2
),则有AC=A(α
1
,α
2
)=0,得C
T
A
T
=0,即A
T
的列向量(即A的行向量)是C
T
x=0的解向量. [*] 解得C
T
x=0的基础解系为ξ
1
=(1,0,0,-1)
T
,ξ
2
=(-7,1,3,0)
T
. 故 A=k
1
ξ
2
﹢k
2
ξ
2
=[*] 其中k
1
,k
2
是任意非零常数. (Ⅱ)若Ax=0和Bx=0有非零公共解,则非零公共解既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表 出,设非零公共解为η=x
1
α
1
﹢x
2
α
2
=x
3
β
1
﹢x
4
β
4
. 于是x
1
α
1
﹢x
2
α
2
-x
3
β
1
-x
4
β
2
=0. (*) 对(α
1
,α
2
,-β
1
,-β
2
)作初等行变换,有 [*] 当a=3时,方程组(*)有非零解k(-1,1,-2,1)
T
(k是任意非零常数).此时Ax=0和Bx=0的非零公共解为η=k(-α
1
1﹢α
2
)=k(-1,-4,-1,-1)
T
=k(1,4,1,1)
T
, 其中k是任意非零常数. 或η=k(-2β
1
﹢β
2
)=k(1,4,1,1)
T
, 其中k是任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Aj4777K
0
考研数学二
相关试题推荐
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2007年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2007年)设D是位于曲线y=(a>1,0≤χ<+∞)下方、χ轴上方的无界区域.(Ⅰ)求区域D绕χ轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(2006年)已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(χ0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于χ≤χ0的部分)及χ轴所围成的平面图形的面积.
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2013年)矩阵相似的充分必要条件为【】
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
求y’’-2y’-ex=0满足初始条件y(0)=1,y’(0)=1的特解.
随机试题
创伤性溃疡的临床特征为
某食品公司基于合同中的仲裁条款向约定的仲裁委员会申请仲裁,请求责令新华商店支付长期拖欠的货款50万元。仲裁委员会受理案件后,某食品公司发现新华商店有转移其位于A区财产的行为。为维护当事人的合法权利,下列哪些做法是正确的?
在下列国际私法范围内的规范中,哪一项属于间接调整方法的法律规范?()
根据冯·诺依曼原理,计算机硬件的基本组成是()。
依据企业所得税法的规定,下列各项中,按照支付所得的企业所在地确定所得来源地的是()。
正常人血浆的pH值为()。
“心理起源说”的代表人物是美国教育家_______。
充分就业意味着百分之百就业。()
下列有关食物热量的说法中,不正确的是()。
【B1】【B3】
最新回复
(
0
)