首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β2=(1,2,-1,a)T. (I)求矩阵A; (Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β2=(1,2,-1,a)T. (I)求矩阵A; (Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的
admin
2018-12-21
58
问题
已知A,B均是2×4矩阵,其中
Ax=0有基础解系α
1
=(1,1,2,1)
T
,α
2
=(0,-3,1,0)
T
;
Bx=0有基础解系β
1
=(1,3,0,2)
T
,β
2
=(1,2,-1,a)
T
.
(I)求矩阵A;
(Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的值及非零公共解.
选项
答案
(I)记C=(α
1
,α
2
),则有AC=A(α
1
,α
2
)=0,得C
T
A
T
=0,即A
T
的列向量(即A的行向量)是C
T
x=0的解向量. [*] 解得C
T
x=0的基础解系为ξ
1
=(1,0,0,-1)
T
,ξ
2
=(-7,1,3,0)
T
. 故 A=k
1
ξ
2
﹢k
2
ξ
2
=[*] 其中k
1
,k
2
是任意非零常数. (Ⅱ)若Ax=0和Bx=0有非零公共解,则非零公共解既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表 出,设非零公共解为η=x
1
α
1
﹢x
2
α
2
=x
3
β
1
﹢x
4
β
4
. 于是x
1
α
1
﹢x
2
α
2
-x
3
β
1
-x
4
β
2
=0. (*) 对(α
1
,α
2
,-β
1
,-β
2
)作初等行变换,有 [*] 当a=3时,方程组(*)有非零解k(-1,1,-2,1)
T
(k是任意非零常数).此时Ax=0和Bx=0的非零公共解为η=k(-α
1
1﹢α
2
)=k(-1,-4,-1,-1)
T
=k(1,4,1,1)
T
, 其中k是任意非零常数. 或η=k(-2β
1
﹢β
2
)=k(1,4,1,1)
T
, 其中k是任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Aj4777K
0
考研数学二
相关试题推荐
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
(2011年)设平面区域D由直线y=χ,圆χ2+y2=2y及y轴所围成,则二重积分χydσ=_______.
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
(1993年)求微分方程(χ2-1)dy+(2χy-cosχ)dχ=0满足初始条件y|χ=1=1的特解.
(1987年)求微分方程χ=χ-y满足条件=0的特解.
求微分方程xy’+(1-x)y=e2x(x>0)的满足的特解.
随机试题
解释下列括号内的词语:而吾未尝以此(自多)者,自以比形于天地,而受气于阴阳。
A、Theyneedcareandaffection.B、Theyarefondofround-the-worldtrips.C、Theyaremostlyformbrokenfamilies.D、Theyarelik
附着于喙突的肌肉是
甲状腺一侧切除术后发生窒息最可能的原因是
某安装公司分包一商务楼(一至五层为商场,六至三十层为办公楼)的变配电工程,工程的主要设备(三相干式电力变压器、手车式开关柜和抽屉式配电柜)由业主采购,设备已运抵施工现场,其他设备、材料由安装公司采购。合同工期60天,并约定提前1天,奖励5万元人民币,延迟1
对某种商品或者服务具有监督职责的组织所控制,而由该组织以外的单位或者个人使用于其商品或者服务,用以证明该商品或者服务的原产地、原料、制造方法、质量或者其他特定品质的商标是()。
在我国大连商品交易所交易的期货合约有( )。
试对金融监管的三道防线分别加以分析。
垄断利润的形成,关键在于
利率期货套利交易包括()两大类。
最新回复
(
0
)