首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β2=(1,2,-1,a)T. (I)求矩阵A; (Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的
已知A,B均是2×4矩阵,其中 Ax=0有基础解系α1=(1,1,2,1)T,α2=(0,-3,1,0)T; Bx=0有基础解系β1=(1,3,0,2)T,β2=(1,2,-1,a)T. (I)求矩阵A; (Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的
admin
2018-12-21
51
问题
已知A,B均是2×4矩阵,其中
Ax=0有基础解系α
1
=(1,1,2,1)
T
,α
2
=(0,-3,1,0)
T
;
Bx=0有基础解系β
1
=(1,3,0,2)
T
,β
2
=(1,2,-1,a)
T
.
(I)求矩阵A;
(Ⅱ)若Ax=0和Bx=0有非零公共解,求参数a的值及非零公共解.
选项
答案
(I)记C=(α
1
,α
2
),则有AC=A(α
1
,α
2
)=0,得C
T
A
T
=0,即A
T
的列向量(即A的行向量)是C
T
x=0的解向量. [*] 解得C
T
x=0的基础解系为ξ
1
=(1,0,0,-1)
T
,ξ
2
=(-7,1,3,0)
T
. 故 A=k
1
ξ
2
﹢k
2
ξ
2
=[*] 其中k
1
,k
2
是任意非零常数. (Ⅱ)若Ax=0和Bx=0有非零公共解,则非零公共解既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表 出,设非零公共解为η=x
1
α
1
﹢x
2
α
2
=x
3
β
1
﹢x
4
β
4
. 于是x
1
α
1
﹢x
2
α
2
-x
3
β
1
-x
4
β
2
=0. (*) 对(α
1
,α
2
,-β
1
,-β
2
)作初等行变换,有 [*] 当a=3时,方程组(*)有非零解k(-1,1,-2,1)
T
(k是任意非零常数).此时Ax=0和Bx=0的非零公共解为η=k(-α
1
1﹢α
2
)=k(-1,-4,-1,-1)
T
=k(1,4,1,1)
T
, 其中k是任意非零常数. 或η=k(-2β
1
﹢β
2
)=k(1,4,1,1)
T
, 其中k是任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Aj4777K
0
考研数学二
相关试题推荐
(2005年)设函数u(χ,y)=φ(χ+y)+φ(χ-y)+∫χ-yχ+yφ(t)dt,其中函数φ具有二阶导数,φ具有一阶导数,则必有【】
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2011年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2004年)微分方程y〞+y=χ2+1+sinχ的特解形式可设为【】
设y1=ex,y2=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为____________.
求微分方程xy’+(1-x)y=e2x(x>0)的满足的特解.
求y’’-2y’-ex=0满足初始条件y(0)=1,y’(0)=1的特解.
随机试题
脂酸β—氧化一个循环的产物不包括
黄芩含有黄芩苷、黄芩素、汉黄芩苷、汉黄芩素。其中黄芩苷是主要有效成分,具有抗菌、消炎作用,是中成药“注射用双黄连(冻干)”的主要成分。《中国药典》以黄芩苷为指标成分进行含量测定。黄芩苷属于
为了实现进度目标,应选择合理的合同结构,以避免过多的合同交界面而影响工程的进展,这属于进度控制的()。
公司营业用主要资产的抵押、出售或者报废一次超过该资产( )的情况,属于内幕信息。
Somechildrenwanttochallengethemselvesbylearningalanguagedifferentfromtheirparentsspeakathome.
某学校组织一次教工接力比赛,共准备了25件奖品分发给获得一、二、三等奖的职工。为设计获得各级奖励的人数,制定两种方案:若一等奖每人发5件,二等奖每人发3件,三等奖每人发2件,刚好发完奖品;若一等奖每人发6件,二等奖每人发3件,三等奖每人发1件,也刚好发完奖
In1999,thepriceofoilhoveredaround$16abarrel.By2008,ithad(21)______the$100abarrelmark.Thereasonsforthe
垄断高价和垄断低价并未否定价值规律,因为()
Onereasonhumanbeingscanthriveinallkindsofclimatesisthattheycancontrolthequalitiesoftheairintheenclosedsp
A、Thewayforwomentoquitsmoking.B、Thedefectsofsmokingtowomen.C、Themeritsofsmokinginmakingprogress.D、Themerits
最新回复
(
0
)