首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1; (Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
admin
2016-05-30
57
问题
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:
(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;
(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
选项
答案
(Ⅰ)因为f(χ)是区间[-1,1]上的奇函数,所以f(0)=0. 因为函数f(χ)在区向[0,1]上可导,根据微分中值定理,存在ξ∈(0,1),使得 f(1)-f(0)=f′(ξ) 又因为f(1)=1,所以f′(ξ)=1. (Ⅱ)因为f(χ)是奇函数,所以f′(χ)是偶函数,故f′(-ξ)=f′(ξ)=1. 令F(χ)=[f′(χ)-1]e
χ
,则F(χ)可导,且F(-ξ)=F(ξ)=0. 根据罗尔定理,存在η∈(-ξ,ξ)[*](-1,1),使得F′(η)=0. 由F′(η)=[f〞(η)+f′(η)-1]e
η
且e
η
≠0,得f〞(η)+f′(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lzt4777K
0
考研数学二
相关试题推荐
求方程的通解.
求幂级数的收敛域及和函数.
设曲线L为球面x2+y2+z2=1与平面z+y+z=0的交线,则∮L(xy+yz+zx)ds=().
在第Ⅰ象限内作椭球面的切平面,使该切平面与三个坐标面所围成的四面体体积最小,并求切点坐标.
闭区域D由直线x+y=0,x轴和y轴所围成,求函数z=f(x,y)=x2y(4-x-y)在闭区域D上的最小值和最大值.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y″+a1(x)y′+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
证明恒等式arcsinx+arccosx=(-1≤x≤1)
设F1(x),F2(x)是区间I内连续函数f(x)的两个不同的原函数,且f(x)≠0,则在区间I内必有________。
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
(2015年)设函数f(χ)=χ+aln(1+χ)+bχsinχ,g(χ)=kχ3.若f(χ)与g(χ)在χ→0时是等价无穷小,求a,b,k的值.
随机试题
排卵型功血的发病机制中,下列说法不正确的是()
关于头痛所提示的先兆症状A、脑血管意外的可能B、脑膜炎C、脑出血D、内脏出血E、脑肿瘤早晨头痛,且由咳嗽和打喷嚏引起则可能是
我国目前有偿出让和转让土地的价格主要是()。
FIDIC分包合同中,承包商以自己的名义就分包商的合理索赔要求向工程师递交索赔报告的事件可能是( )。
建设工程索赔的起因是()。
根据《工程建设项目施工招标投标办法》(国家八部委局第30号令),当投标人投标文件中出现用数字表示的数额与用文字表示的数额不一致时,除招标文件另有约定外,以()为准,调整后的报价经投标人确认后产生约束力。
网络购物:在线支付:货到付款
(2011年真题)下列法学家中,把法律比作语言和风俗,主张法是民族精神之体现的是()。
=______.
子模式是用户与数据库的接口之一,它对应于数据库的(30)。
最新回复
(
0
)