首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, (Ⅰ)证明r(A)=2; (Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
(17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, (Ⅰ)证明r(A)=2; (Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
admin
2019-03-21
58
问题
(17)设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
,
(Ⅰ)证明r(A)=2;
(Ⅱ)若β=α
1
+α
2
+α
3
,求方程组Ax=β的通解.
选项
答案
(Ⅰ)由于矩阵A的第3列可以由其前两列线性表示,即A的列向量组线性相关.从而知A的秩r(A)≤2;又因为A有3个不同的特征值,所以A至少有2个不为零的特征值,从而r(A)≥2;故r(A)=2. (Ⅱ)由0=α
1
+2α
2
-α
3
=[α
1
,α
2
,α
3
][*] 知ξ=[*]是方程组Ax=0的一个解.又由r(A)=2知方程组Ax=0的基础解系所含解向量的个数为3-2=1,所以ξ=[*]是方程组Ax=0的一个基础解系. 因为β=α
1
+α
2
+α
3
=[α
1
,α
2
,α
3
][*],所以η=[*]是方程绢Ax=β的一个特解,故方程组Ax=β的通解为x=[*],其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/1FV4777K
0
考研数学二
相关试题推荐
设有多项式P(x)=x4+a3x3+a2x2+a1x+a0,又设x=x0是它的最大实根,则P’(x0)满足
求数列极限:(Ⅰ)(M>0为常数);(Ⅱ)设数列{xn}有界,求
方程y"-2y’+3y=exsin的特解的形式为
计算二重积分I=,其中D由y=x与y=x4围成.
设有微分方程y’-2y=φ(x),其中φ(x)=,试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
函数F(x)=∫xx+2πf(t)dt,其中f(t)=(1+sin2t)cos2t,则F(x)
求极限:.
求曲线y=χ2-2χ、y=0、χ=1、χ=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
(00年)某湖泊的水量为V,每年排入湖泊内含污物A的污水量为流入湖泊内不含A的水量为,流出湖泊的水量为.已知1999年底湖中A的含量为5m0,超过国家规定指标,为了治理污染.从2000年起,限定排入湖泊中含A污水的浓度不超过.问至多需经过多少年,湖泊中污染
随机试题
高压变压器的容量一般是最大额定容量的
某猪场夏季经常出现妊娠母猪流产、产死胎和木乃伊胎,公猪一侧睾丸肿大。该病分离鉴定病原常用的实验动物是
甲将其所有的房屋出租给乙,双方口头约定租金为每年5万元,双方未约定租赁期限,甲乙双方又无法就租赁期限协议补充,下列关于合同解除的说法正确的是( )。
甲公司与乙公司因合同发生纠纷,双方根据仲裁协议向北京市仲裁委员会仲裁。仲裁委审理作出裁决后,甲公司提出请求认为乙公司向仲裁委提交了伪造的证据但仲裁委却据此做出了裁决,于是请求法院撤销仲裁裁决,法院受理后查明甲公司所称属实,于是裁定撤销仲裁裁决。下列说法哪些
图示起重机的平面构架,自重不计,且不计滑轮质量,已知:F=100kN,L=70cm,B、D、E为铰链连接。则支座A的约束力为:
根据企业所得税法律制度的规定,对企业共同合作开发新技术、新产品、新工艺项目的,由合作各方就自身承担的研发费用分别按照规定计算加计扣除。()
()是我们认识世界的第一步,是关于世界一切知识的最初源泉。
论述政治经济制度与教育的关系。
WHO
以下控制流程图的环路复杂性V(G)等于(54)。
最新回复
(
0
)