首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, (Ⅰ)证明r(A)=2; (Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
(17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, (Ⅰ)证明r(A)=2; (Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
admin
2019-03-21
33
问题
(17)设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
,
(Ⅰ)证明r(A)=2;
(Ⅱ)若β=α
1
+α
2
+α
3
,求方程组Ax=β的通解.
选项
答案
(Ⅰ)由于矩阵A的第3列可以由其前两列线性表示,即A的列向量组线性相关.从而知A的秩r(A)≤2;又因为A有3个不同的特征值,所以A至少有2个不为零的特征值,从而r(A)≥2;故r(A)=2. (Ⅱ)由0=α
1
+2α
2
-α
3
=[α
1
,α
2
,α
3
][*] 知ξ=[*]是方程组Ax=0的一个解.又由r(A)=2知方程组Ax=0的基础解系所含解向量的个数为3-2=1,所以ξ=[*]是方程组Ax=0的一个基础解系. 因为β=α
1
+α
2
+α
3
=[α
1
,α
2
,α
3
][*],所以η=[*]是方程绢Ax=β的一个特解,故方程组Ax=β的通解为x=[*],其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/1FV4777K
0
考研数学二
相关试题推荐
设xn+1=ln(1+xn),x1>0,
求无穷积分J=
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
已知方程组总有解,则λ应满足_________.
求曲线y=3-|χ2-1|与χ轴围成的封闭图形绕y=3旋转所得的旋转体的体积.
(2006年试题,21)已知曲线l的方程为(I)讨论L的凹凸性;(Ⅱ)过点(一1,0)引L的切线,求切点(xo,yo),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤xo的部分)及x轴所围成的平面图形的面积.
设一厂房容积为V(立方米).开始时经测算,空气中含有某种有害气体m0(克).现在打开通风机,每分钟通入Q(立方米)的新鲜空气.假设通入的新鲜空气中不含这种有害气体,同时排出等量的含有有害气体的混浊空气,并使厂房内空气始终保持均匀.(I)求厂房内该有害气
随机试题
人的世界观形成有一定的轨迹,人的一切言行总是一定“轨迹”的体现。资产阶级的唯我主义的形成是圆内半径运行轨迹的结果。这个“圆”的圆心就是“我”,“半径”则是个人的利害得失。对文字中画线句子理解正确的一项是()。
甲状腺手术前用的药物是
甲状腺吸碘试验测定检查前一个月应禁食
2006年5月9日,张某为其爱人谢某投保保险金额为10万元的两全保险(两全保险又称生死保险,是指被保险人在保险合同约定的保险期间内死亡,或在保险期间届满仍生存时,保险人按照保险合同承担给付保险金责任的人寿保险)。谢某书面同意并认可了上述保险金额,保险期限为
通常将闪点小于()℃的液体归为甲类火灾危险性物质。
()应该是国内最早开办的个人贷款产品。
魅力型领导者的非道德特征是()。
位于市区的某国有工业企业利用厂区空地建造写字楼,2009年发生相关业务如下:(1)按照国家有关规定补交土地出让金4000万元,缴纳相关费用160万元:(2)写字楼开发成本3000万元:(3)写字楼开发费用中的利息支出为300万
为了达到测量的预定要求,测量仪器必须具有符合规范要求的计量学特性。现就测量仪器的计量特性选出以下问题的正确答案。砝码质量的标称值为200mg,而其约定真值为199.994mg,则示值误差等于_________。
Lookatthenotesbelow.Youwillhearawomanphoningforajobapplicationform.JobApplicationR
最新回复
(
0
)