首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α1线性无关,若 β=α1+2α2一α3=α1+α2+α3一α4=α1+3α2+α3+2α4,则Ax=β的通解为_____.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α1线性无关,若 β=α1+2α2一α3=α1+α2+α3一α4=α1+3α2+α3+2α4,则Ax=β的通解为_____.
admin
2018-02-23
73
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
1
线性无关,若
β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
一α
4
=α
1
+3α
2
+α
3
+2α
4
,则Ax=β的通解为_____.
选项
答案
[*],k
1
,k
2
∈R
解析
由β=α
1
一2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
可知
均为Ax=β的解,故β
1
一β
2
=
均为Ax=0
的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=0有两个线性无关的解β
1
一β
2
,β
2
一β
3
,可知Ax=0的基础解系中至少含有两个向量,也即4一r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
一
2
,β
2
一β
3
即为Ax=0的基础解系.故Ax=β的通解为
,k
1
,k
2
∈R
转载请注明原文地址:https://kaotiyun.com/show/1Jk4777K
0
考研数学二
相关试题推荐
已知f(x)是微分方程=_______.
已知函数若当x→0时,f(x)-a与xk同阶无穷小,求k。
设函数y=y(x)由方程y=1-xey确定,则=________.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ+(a)>0,证明:存在ξ∈(a,b),使得f〞(a)<0.
设f(x,y)在点(0,0)的某邻域内连续,且满足则f(x,y)在(0,0)处().
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.
设f(x)为非负连续函数,且f(x)∫0xf(x一t)dt=e2x(x>0),求f(x)在[0,2]上的平均值.
随机试题
在PowerPoint2003中,幻灯片放映时能够切换到下一张幻灯片的操作有________。
6岁儿童,B超发现甲状腺右侧1.2cm实性结节,无包膜,颈周未探及肿大淋巴结,治疗为
腹泻超过多长时间为慢性腹泻
脑血流和颅内压调节的特点不包括
根据《关于制止电解铝行业违规建设盲目投资的若干意见》,属于以下( )情况的矿点必须依法关闭。
民航规定,在飞机离站前24小时之前申请退票,所收取的手续费为票价的()。
19世纪70年代以后,王韬、薛福成、马建忠、郑观应等人不仅主张学习西方的科学技术,同时也要求吸纳西方的政治、经济学说。他们的共同特点是()
HowtoapproachReadingTestPartFive•ThispartoftheReadingTesttestsyourgrammar:•Readthewholetextquicklytofind
WhatistheproblemofEngland’semergencyhealthcareservices?
Corporationsasagroupofferavarietyofjobs.Mostlargecompaniessendpeopletocollegesto【B1】______graduatingstudentsw
最新回复
(
0
)