首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
admin
2019-07-22
59
问题
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ
1
+c
1
η
1
+c
2
η
2
,ξ
1
=(1,0,1),η
1
=(1,1,0),η
2
=(1,2,1);(Ⅱ)有通解ξ
2
+cη,ξ
2
=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
选项
答案
公共解必须是(Ⅱ)的解,有ξ
2
+cη的形式,它又是(Ⅰ)的解,从而存在c
1
,c
2
使得 ξ
2
+cη=ξ
1
+c
1
η
1
+c
2
η
2
,于是ξ
2
+cη-ξ
1
可用η
1
,η
2
线性表示,即r(η
1
,η
2
,ξ
2
+cη-ξ
1
)=r(η
1
,η
2
)=2. [*] 得到c=1/2,从而(Ⅰ)和(Ⅱ)有一个公共解ξ
2
+η/2=(1/2,3/2,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/1LN4777K
0
考研数学二
相关试题推荐
求
=_______.
n维列向量组α1,…,αn-1线性无关.且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设,其中a,b为常数,则().
设f(χ)二阶连续可导,f′(0)=0,且=-1,则().
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:存在ξ∈(0,3),使f’(ξ)=0.
随机试题
根据《建筑安装工程费用项目组成》,安全文明施工费包括()。
A.0~1%B.0.5%~5%C.2%~8‰D.20%~40%E.50%~70%正常成年人白细胞分类计数,嗜酸性粒细胞为()
()应谨慎考虑建设项目对社会和人口影响的分析评价范围,以便恰当评价拟建项目社会影响在年龄、性别、收入水平、民族等方面的差异。
根据水利工程建设规模,抽查各单位档案整理情况,抽查档案总量应在()以上。
证券公司与客户签订融资融券业务合同后,应当根据客户的申请,按照商业银行的规定,为其开立实名信用证券账户。( )
简要描述投资组合理论。
某项目已进展到第3周,对项目前2周的实施情况总结如下:PV=3200元,EV=3000元,AC=3300元。SPI和项目状态为(34)。
【S1】【S7】
A、ItistheonlycitywithbullettrainsintheU.S.B、ItslightrailorsubwayisthefastestintheU.S.C、Thelightrailor
A、TheU.S.A.B、Italy.C、China.D、Russia.B
最新回复
(
0
)