首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续且单调递增,证明: ∫abf(x)dx∫abg(x)dx≤(b-a)∫abf(x)g(x)dx.
设函数f(x),g(x)在[a,b]上连续且单调递增,证明: ∫abf(x)dx∫abg(x)dx≤(b-a)∫abf(x)g(x)dx.
admin
2018-09-20
28
问题
设函数f(x),g(x)在[a,b]上连续且单调递增,证明:
∫
a
b
f(x)dx∫
a
b
g(x)dx≤(b-a)∫
a
b
f(x)g(x)dx.
选项
答案
设 I=(b-a)∫
a
b
f(x)g(x)dx-∫
a
b
f(x)dx∫
a
b
g(x)dx =∫
a
b
dy∫
a
b
f(x)g(x)dx-∫
a
b
f(x)dx∫
a
b
g(y)dy [*] 其中D:a≤x≤b,a≤y≤b.因为D关于y=x对称,所以 [*] 由f(x),g(x)在[a,b]上单调递增,得2I≥0,即I≥0,故 ∫
a
b
f(x)dx∫
a
b
g(x)dx≤(b一a)∫
a
b
f(x)g(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/1VW4777K
0
考研数学三
相关试题推荐
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
设f(x)∈C[0,1]f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设(ay一2x一y2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=________.
设f(u,υ)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’x(1,2)=1,f’y(1,2)=4,则f(1,2)=________.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:E(U),E(V),D(U),D(V),ρUV;
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f’(η)=2∫01f(x)dx.
设f(x),g(x)在点x=0的某邻域内连续,且f(x)具有一阶连续导数,满足=0,f’(x)=一2x2+∫0xg(x一t)dt,则().
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(A)=g(b)=0,试证:(Ⅰ)在开区间(a,b)内g(x)≠0;(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
已知P(A)=0.5,P(B)=0.7,则(Ⅰ)在怎样的条件下,P(AB)取得最大值?最大值是多少?(Ⅱ)在怎样的条件下,P(AB)取得最小值?最小值是多少?
设则下列矩阵中与A合同但不相似的是
随机试题
使用上击器,当上提拉力大于摩擦力的时候,摩擦芯轴由()。
薄层固定床反应器主要用于()。
遗传多样性、物种多样性和生态系统多样性是______的三个层次。
奇恒之腑中与肾密切相关的是
在实际工程中,()是生态影响评价必须重点关注的时段。
外国政府贷款的期限较长,还款平均期限为()年,有的甚至长达50年。
射线检测对对接焊缝()缺陷检出率高。
当旅游团队无领队时,在入住的过程中应由()分房。
著名太湖石“玉玲珑”是()的主要景观之一。
文慧是新东方学校的人力资源培训讲师,负责对新入职的教师进行入职培训,其PowerPoint演示文稿的制作水平广受好评。最近,她应北京节水展馆的邀请,为展馆制作一份宣传水知识及节水工作重要性的演示文稿。节水展馆提供的文字资料及素材参见“水资源利用与
最新回复
(
0
)