首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是______。
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是______。
admin
2018-12-19
37
问题
向量组α
1
=(1,一2,0,3)
T
,α
2
=(2,一5,一3,6)
T
,α
3
=(0,1,3,0)
T
,α
4
=(2,一1,4,7)
T
的一个极大线性无关组是______。
选项
答案
α
1
,α
2
,α
4
解析
用已知向量组组成一个矩阵,对矩阵作初等行变换,则有
(α
1
,α
2
,α
3
,α
4
)
因为矩阵中有三个非零行,所以向量组的秩为3,又因为非零行的第一个不等于零的数分别在1,2,4列,所以α
1
,α
2
,α
4
是向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组。
转载请注明原文地址:https://kaotiyun.com/show/1Vj4777K
0
考研数学二
相关试题推荐
设有摆线试求L绕x轴旋转一周所得旋转面的面积.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/m3)
设y=f(x)是区间[0,1]上的任一非负连续函数.又设f(x)在区间(0,1)内可导,且,证明(1)中的x0是唯一的.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在η∈(0,2),使f(η)=f(0);
(2015年)设D是第一象限中由曲线2χy=1,4χy=1与直线y=χ,y=χ围成的平面区域,函数f(χ,y)在D上连续,则(χ,y)dχdy=【】
(2010年)设已知线性方程组Aχ=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Aχ=b的通解.
(2012年)设函数f(χ,y)可微,且对任意χ,y都有,则使不等式f(χ,y)<f(χ,y)成立的一个充分条件是【】
(2002年)设0<a<b,证明不等式
设A,B是n阶矩阵,证明:AB和BA的主对角元的和相等.(方阵主对角元的和称为方阵的迹,记成trA,即trA=aij)
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
随机试题
液化石油气的主要成分是()。
保管、使用增感屏的方法中,不正确的是
下列账户中,根据期末余额直接填列资产负债表项目数据的有()。
似设资产负债率小于100%,下列各项中,导致企业资产负债率上升的是()。
法国作家罗曼·罗兰说,在贝多芬的()交响曲展开部的末尾,音乐描写了“英雄在号角声中从死亡的深渊里站起”。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
A.chocolatesaremyfavoriteB.ItsproductionisverysmallC.IbringyoualittlesomethingJack:MissSong,hownicetosee
What’saman?Or,indeed,awoman?Biologically,theanswermightseemobvious.Ahumanbeingisa(n)【C1】______whohasgrownfr
C++语言中标点符号中表示一条预处理命令开始的是
A、 B、 C、 C本题图片是三种日常用品。句中的关键词是raining(下雨)和umbrella(雨伞),听清了这两处尤其是后一词即可选出答案。
最新回复
(
0
)