首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
admin
2016-05-30
115
问题
(2001年)已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX=0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Aχ=0的解.同理可知β
2
,β
3
也都是Aχ=0的解.已知Aχ=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Aχ=0的一个基础解系,当且仅当β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数χ
1
,χ
2
,χ
3
,χ
4
,使得 χ
1
β
1
+β
2
χ
2
+χ
3
β
3
+χ
4
β
4
=0 即(χ
1
+tχ
4
)α
1
+(tχ
1
+χ
2
)α
2
+(tχ
2
+χ
3
)α
3
(tχ
3
+χ
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 故当且仅当1-t
4
≠0,即t≠±1时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Aχ=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/z734777K
0
考研数学二
相关试题推荐
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
设f(u)为连续函数,且=__________.
利用变换y=f(ex)求微分方程y”-(2ex+1)y’+e2xy=e3x的通解.
设区域D={(x,y)|-1≤x≤1,-1≤y≤1),f(x)为D内的正值连续函数,a,b为常数,则=________.
求常数项级数的和:
设a=2i-j+k,b=i+3j-k,试在a,b所确定的平面内,求一个与a垂直的单位向量.
求极限,记此极限为f(x),求函数f(x)的间断点并指出其类型。
若在x=1处连续,求a的值。
设f(x)有连续的导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt且当x→0时,F’(x)与xk是同阶无穷小,则k=________。
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
随机试题
洋务运动时期国内最大的造船厂是()。
钢管可分为有缝钢管和无缝钢管。
三大类营养物质的消化产物大部分被吸收的部位()
A.急性粟粒性肺结核B.急性空洞型肺结核C.局灶型肺结核D.干酪性肺炎E.广泛性肺结核属于血源播散性肺结核的是
关于散剂的描述正确的是
战略投资者不得参与首次公开发行股票的初步询价和累计投标询价,并应当承诺获得本次配售的股票持有期限不少于()个月,持有期自本次公开发行的股票上市之日起计算。
事业单位随买随用的零星办公用品应作为存货核算。()
简述侵害名誉权的构成要件。
电子商务是指通过数字通信进行商品和服务的买卖以及资金的转账。根据上述定义,下列属于电子商务的是()。
NarratorListentotheconversationbetweenastudentandtheclubsecretary.Nowgetreadytoanswerthequestions.You
最新回复
(
0
)