首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
(2001年)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
admin
2016-05-30
82
问题
(2001年)已知α
1
,α
2
,α
3
,α
4
是线性方程组AX=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是AX=0的一个基础解系.
选项
答案
由Aβ
1
=A(α
1
+tα
2
)=Aα
1
+tAα
2
=0+0=0,知β
1
为Aχ=0的解.同理可知β
2
,β
3
也都是Aχ=0的解.已知Aχ=0的基础解系含4个向量,故β
1
,β
2
,β
3
,β
4
为Aχ=0的一个基础解系,当且仅当β
1
,β
2
,β
3
,β
4
线性无关. 设有一组数χ
1
,χ
2
,χ
3
,χ
4
,使得 χ
1
β
1
+β
2
χ
2
+χ
3
β
3
+χ
4
β
4
=0 即(χ
1
+tχ
4
)α
1
+(tχ
1
+χ
2
)α
2
+(tχ
2
+χ
3
)α
3
(tχ
3
+χ
4
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,故 [*] 故当且仅当1-t
4
≠0,即t≠±1时,方程组(*)仅有零解,此时β
1
,β
2
,β
3
,β
4
线性无关,从而可作为Aχ=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/z734777K
0
考研数学二
相关试题推荐
已知函数z=u(x,y)eax+by,且=0,试确定常数a,b,使函数z=z(x,y)能满足方程
设A,B是两个随机事件,已知P(A|B)=0.3,P(B|A)=0.4,=0.7,则P(A+B)=________.
设D是由曲线与直线y=x围成,则=____________.
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
已知y(x)=(2x)2n(|x|<1),求:y(0),y’(0),并证明:(1-x2)y”-xy’=4;
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
向量2a+5b与向量a-b垂直,向量2a+3b与向量a-5b垂直,则=________.
设x→0时,-ex与xn是同阶无穷小,则n为________。
随机试题
DNA分子上能被RNA聚合酶特异结合的部位叫作()
口有涩味如食生柿子的感觉属于
半夏除燥湿化痰,降逆止呕外,还有的功效是
根据商品房建设的需要,可以依照法律程序提前收回已出让的土地使用权,但在收回时应根据土地使用者利用土地的实际情况和土地的剩余年限给予适当赔偿。()
在工程经济分析中,以投资收益率指标作为主要决策依据,其可靠性较差的原因在于()。
根据《会计档案管理办法》的规定,会计档案的保管期限为永久定期两类。会计档案的定期保管期限最短为()
对于《普通高中语文课程标准(实验)》中提出的“表达与交流”方面的实施建议,下列理解不正确的是()。
为了解幼儿同伴交往特点,研究者深入幼儿所在的班级,详细记录其交往过程的语言和作等。这一研究方法属于()。
科学的可靠性还源于科学界具有公认的评价准则,所以能对理论取得一致意见,因此在比较成熟的科学领域,一个问题无论问哪一个科学家,都可以得到大致相同的答案。哲学、伦理学等学科没有公认的评价准则,同一个问题问不同的哲学家或伦理学家可能得到完全相反的结果,令人无所适
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)