首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
admin
2017-10-21
58
问题
设3阶矩阵A有3个特征向量η
1
=(1,1,1)
T
,η
2
=(1,2,4)
T
,η
3
=(1,3,9)
T
,它们的特征值依次为1,2,3.又设α=(1,1,3)
T
,求A
n
α.
选项
答案
把α表示为η
1
,η
2
,η
3
线性组合,即解方程x
1
η
1
+x
2
η
2
+x
3
η
3
=α, [*] 得到α=2η
1
一2η
2
+η
3
线.于是 A
n
α=A
n
(2η
1
一2η
2
+η
3
)=2A
n
η
1
—2A
n
η
2
+A
n
η
3
=2η
1
—2
n+1
η
2
+3
n
η
3
=(2—2
n+1
+3
n
,2—2
n+2
+3
n+1
,2—2
n+3
+3
n+2
)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/1dH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设的逆矩阵A—1的特征向量.求x,y,并求A—1对应的特征值μ.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设A=(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3a≠0,a2=a4=一a,求ATX=b的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
随机试题
下列不符合慢性淋巴细胞性白血病的淋巴结的病理变化的是
在现实中,房地产的价格直接取决于花费的成本,投入的成本越多,其价值越高。()
下列关于房产图的表述中,正确的有()。[2003年考题]
承包商对工程项目管理的目的是什么?
由()组织编制项目管理实施规划。
当投资项目仅凭投资机会研究还不能确定其取舍时,需对其进行()。
下列选项中,属于定量分析的是()。
定员定额分析法不包括()。
关于法律制定,下列说法正确的有()。
已知汉字“中”的区位码是5448,则其国标码是
最新回复
(
0
)