首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,...,αs 均为n维向量,下列结论不正确的是
设α1,α2,...,αs 均为n维向量,下列结论不正确的是
admin
2019-02-23
48
问题
设α
1
,α
2
,...,α
s
均为n维向量,下列结论不正确的是
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,...,α
s
,线性无关.
B、若α
1
,α
2
,...,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
C、α
1
,α
2
,...,α
s
线性无关的充分必要条件是此向量组的秩为s.
D、α
1
,α
2
,...,α
s
线性无关的必要条件是其中任意两个向量线性无关.
答案
B
解析
按线性相关定义:若存在不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,
则称向量组α
1
,α
2
,...,α
s
线性相关.
因为线性无关等价于齐次方程组只有零解,那么,若k
1
,k
2
,…,k
s
不全为0,则(k
1
,k
2
,…,k
s
)
T
必不
是齐次方程组的解,即必有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0.可知(A)是正确的,不应当选.
因为“如果α
1
,α
2
,...,α
s
线性相关,则必有α
1
,α
2
,...,α
s+1
线性相关”,所以,若α
1
,α
2
,...,α
s
中有某两个向量线性相关,则必有α
1
,α
2
,...,α
s
线性相关.那么α
1
,α
2
,...,α
s
线性无关的必要条件是其任一个部分组必线性无关.因此(D)是正确的,不应当选.
转载请注明原文地址:https://kaotiyun.com/show/2I04777K
0
考研数学一
相关试题推荐
已知χ2~χ2(n),则E(χ2)=__________.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?为什么?(Ⅱ)求α1,α2,α3,α4,β的一个极大无关组.
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:是方程y’+p(x)y=0的所有解.
设二维随机变量(X,Y)的联合密度函数为f(x,y)=.判断随机变量X,Y是否相互独立;
(Ⅰ)求累次积分(Ⅱ)设连续函数f(x)满足f(x)=1+∫x1f(y)f(y一x)dy,记I=∫01f(x)dx,求证:I=1+∫01f(y)dy∫0yf(y一x)dx,(Ⅲ)求出I的值.
设某地区在一年内发生一般性交通事故的次数X和发生重大交通事故的次数Y相互独立,且分别服从参数为λ1和λ2的泊松分布.试求在一年内共发生了n(n≥0)次交通事故的条件下,重大交通事故Y的条件概率分布.
设有摆线(一π≤θ≤π),则L绕x轴旋转一周所得旋转面的面积A=______.
求空间曲线积分J=∫Ly2dx+xydy+xzdz,其中L是圆柱面x2+y2=2y与平面y=z一1的交线,从x轴正向看去取逆时针方向.
设随机事件A与B相互独立,且P(B)=0.5,P(A—B)=0.3,则P(B—A)=()
设,则当x→0时,f(x)是g(x)的().
随机试题
酸碱指示剂一般是有机弱酸或有机弱碱,它们在不同pH值的溶液中呈现不同颜-色是因为()。
分层注水井全井注水量不应超过配注水量的±20%。()
在西方美学史上,提出“美是道德的象征”这一命题的美学家是()
成人常规心脏摄影,焦一片距离应为
“十二五”时期,要把符合落户条件的农业转移人口逐步转为城镇居民作为推进城镇化的()任务。
阶级矛盾和统治阶级内部矛盾的不可调和性,是警察产生的政治条件。( )
1.2013年6月22日,在柬埔寨首都金边召开的第37届世界遗产委员会会议一致审议通过中国的红河哈尼梯田文化景观列入《世界遗产名录》。红河哈尼梯田文化景观成为中国第31项世界文化遗产,中国世界遗产总数达到45项。汉文字史料记载就有1300多年以上
简述抵押权的实现。
信息系统项目完成后,最终产品或项目成果应置于(332)内,当需要在此基础上进行后续开发时,应将其转移到(333)后进行。(333)
HowtoReadEffectivelyManystudentstendtoreadbookswithoutanypurpose.Theyoftenreadabookslowlyandingreatdeta
最新回复
(
0
)