首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D。若D绕x轴旋转一周所得旋转体体积最小,求: 曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D。若D绕x轴旋转一周所得旋转体体积最小,求: 曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
admin
2019-09-27
40
问题
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D。若D绕x轴旋转一周所得旋转体体积最小,求:
曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
选项
答案
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2LA4777K
0
考研数学二
相关试题推荐
与曲线(y-2)2=x相切,且与曲线在点(1,3)的切线垂直的直线方程为______________。
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y=y(x)满足的积分、微分方程.
设若齐次方程组AX=0的任一非零解均可用α线性表示.则a=().
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
曲线y=lnx与x轴及直线x=,x=e所围成的图形的面积是()
连续函数f(χ)满足f(χ)=3∫0χf(χ-t)dt+2,则f(χ)=_______.
设连续函数z=f(x,y)满足,则dz|(0,1)=______。
微分方程(y2+χ)dχ-2χydy=0的通解为_______.
设曲线y=y(x)满足xdy+(x一2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转一周所得旋转体的体积最小,则y(x)=()
设曲线y=ax2(a>0,x≥0)与y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
随机试题
提出“消极的X理论”和“积极的Y理论”观点的学者是()
保护人体避免感染乙型病毒性肝炎的抗体是_______。
A.心B.脾C.肺D.肝E.肾称“罢极之本”的是
根据建设部2000年颁布的《建筑工程施工图设计文件审查暂行办法》规定,建设单位应当将施工图报送建设行政主管部门,由建设行政主管部分委托有关审查机构进行审查。审查的主要内容包括()。
关于融资租赁合同当事人的权利义务,下列说法正确的有()。
“孟母三迁”的典故体现了影响人发展的哪一种因素?这种因素在人的发展中有什么作用?
在教育过程中,切勿“揠苗助长”“陵节而施”,这是人的身心发展的()的要求。
受全球经济危机的影响,H公司今年的经济效益远没有往年好。公司员工月奖金都受到了不同程度的影响。大家最担心的还是年终奖的情况。据可靠消息透露,一个员工的年终奖将受到很大影响,除非他对公司做出了非同一般的业绩并且没有缺勤的情况发生。如果上述断定是真的,则以下
阅读下列程序说明和C代码,回答问题1~2。[说明]本程序用古典的Eratosthenes的筛法求从2起到指定范围内的素数。如果要找出2至10中的素数,开始时筛中有2到10的数,然后取走筛中的最小的数2,宜布它是素数,并把该素数的倍数都取走。这样,
Christmasiscelebrated【B1】______theworld.December25isbelievedtobethebirthdayofJesusChrist.People【B2】______gift
最新回复
(
0
)