首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
admin
2020-06-05
39
问题
已知矩阵A是n阶正定矩阵,证明:A
﹣1
是正定矩阵.
选项
答案
因为A正定,所以A
T
=A,那么(A
﹣1
)
T
=(A
T
)
﹣1
=A
﹣1
,于是A
﹣1
是对称矩阵. 方法一 (用特征值)设矩阵A
﹣1
的特征值是λ
1
,λ
2
,…,λ
n
,则矩阵A的特征值是[*].由A正定,知其特征值[*]﹥0(i=1,2,…,n),从而矩阵A
﹣1
的特征值是λ
i
﹥0(i=l,2,…,n)全大于0.因此矩阵A
﹣1
正定. 方法二 因为矩阵A正定,故存在可逆矩阵C使C
T
AC=E,那么 (C
T
AC)
﹣1
=C
﹣1
A
﹣1
(C
T
)
﹣1
=C
﹣1
A
﹣1
(C
﹣1
)
T
=E 所以A
﹣1
与E合同,故A
﹣1
正定. 方法三 (用定义)注意到对于任意非零向量x,有 x
T
A
﹣1
x=x
T
(A
﹣1
AA
﹣1
)x=(x
T
A
﹣1
)A(A
﹣1
x)=(A
﹣1
x)
T
A(A
﹣1
x)﹥0(A
﹣1
x≠0) 从而A
﹣1
正定. 方法四 因为A正定,那么A对称且可逆,于是A
T
A
﹣1
A=A,所以A
﹣1
与A合同,进而二次型x
T
Ax与x
T
A
﹣1
x有相同的正、负惯性指数.因此,由x
T
Ax是正定二次型,可知x
T
A
﹣1
x也为正定二次型,故A
﹣1
正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Nv4777K
0
考研数学一
相关试题推荐
曲面z=x2+y2与平面2x+4y—z=0平行的切平面方程是______.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________
方程组x1+x2+x3+x4+x5=0的基础解系是__________.
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设z=z(x,y)是由方程z-y-z+2xez-y-x=0确定的隐函数,则在点(0,1)处z=z(x,y)的全微分dz|(0,1)=()
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设ξ1=(1,-2,3,2)T,ξ2=(2,0,5,-2)T是齐次线性方程组Aχ=0的基础解系,则下列向量中是齐次线性方程组Aχ=0的解向量的是
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用上题的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论.
求原方程的通解.
随机试题
简述简单蒸气压缩制冷循环的基本构成。
___________是建立组织机构的首要环节或基本途径。
现代政党
简述计算机的组成部件。
镇静催眠药按化学结构可分为
下列因素中,影响企业生产能力的有()。
下列被誉为“国酒”“外交酒”的是()。
国共两党与各革命阶级第一次合作的政治基础是________。
第二代计算机所使用的主要逻辑器件为()。
•Readthearticlebelowaboutproblemsindoinginternationaltrade.•Foreachquestion23-28ontheoppositepage,choosethec
最新回复
(
0
)