首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
admin
2020-06-05
58
问题
已知矩阵A是n阶正定矩阵,证明:A
﹣1
是正定矩阵.
选项
答案
因为A正定,所以A
T
=A,那么(A
﹣1
)
T
=(A
T
)
﹣1
=A
﹣1
,于是A
﹣1
是对称矩阵. 方法一 (用特征值)设矩阵A
﹣1
的特征值是λ
1
,λ
2
,…,λ
n
,则矩阵A的特征值是[*].由A正定,知其特征值[*]﹥0(i=1,2,…,n),从而矩阵A
﹣1
的特征值是λ
i
﹥0(i=l,2,…,n)全大于0.因此矩阵A
﹣1
正定. 方法二 因为矩阵A正定,故存在可逆矩阵C使C
T
AC=E,那么 (C
T
AC)
﹣1
=C
﹣1
A
﹣1
(C
T
)
﹣1
=C
﹣1
A
﹣1
(C
﹣1
)
T
=E 所以A
﹣1
与E合同,故A
﹣1
正定. 方法三 (用定义)注意到对于任意非零向量x,有 x
T
A
﹣1
x=x
T
(A
﹣1
AA
﹣1
)x=(x
T
A
﹣1
)A(A
﹣1
x)=(A
﹣1
x)
T
A(A
﹣1
x)﹥0(A
﹣1
x≠0) 从而A
﹣1
正定. 方法四 因为A正定,那么A对称且可逆,于是A
T
A
﹣1
A=A,所以A
﹣1
与A合同,进而二次型x
T
Ax与x
T
A
﹣1
x有相同的正、负惯性指数.因此,由x
T
Ax是正定二次型,可知x
T
A
﹣1
x也为正定二次型,故A
﹣1
正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Nv4777K
0
考研数学一
相关试题推荐
微分方程y’-xe-y+=0的通解为_______.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
下列矩阵中不能相似对角化的是
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示.下列命题正确的是
设a,b为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角θ=()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
随机试题
试述质量体系的建立与运行。
有关右心室的叙述,错误的是
证券公司从事证券资产管理业务,接受一个客户的单笔委托资产价值低于规定的最低限额;投资范围或者投资比例违反规定的,责令改正,给予警告,没收违法所得,并处以违法所得()的罚款。
()是指新建房屋申请人,或原有但未进行过登记的房屋申请人,原始取得所有权而进行的登记。
躁狂症“三高症状”包括()。(2003年8月三级真题)
初中“平面直角坐标系”(第一节课)设定的教学目标如下:①了解有序数对的概念,体会有序数对在现实生活中应用的广泛性;②通过实例让学生认识有序数对,感受有序数对在确定点的位置中的作用。完成下列任务:本节课的教学内容对后续哪些内容的学习有直接影响?
公安机关有(),这些手段能否正确运用,直接关系到国家、社会和人民的利益。
下列情形不能办理预告登记的事项是()。
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明:(I)f(x)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
Willyoucometoseemeifit______onSunday?
最新回复
(
0
)