首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
admin
2020-06-05
63
问题
已知矩阵A是n阶正定矩阵,证明:A
﹣1
是正定矩阵.
选项
答案
因为A正定,所以A
T
=A,那么(A
﹣1
)
T
=(A
T
)
﹣1
=A
﹣1
,于是A
﹣1
是对称矩阵. 方法一 (用特征值)设矩阵A
﹣1
的特征值是λ
1
,λ
2
,…,λ
n
,则矩阵A的特征值是[*].由A正定,知其特征值[*]﹥0(i=1,2,…,n),从而矩阵A
﹣1
的特征值是λ
i
﹥0(i=l,2,…,n)全大于0.因此矩阵A
﹣1
正定. 方法二 因为矩阵A正定,故存在可逆矩阵C使C
T
AC=E,那么 (C
T
AC)
﹣1
=C
﹣1
A
﹣1
(C
T
)
﹣1
=C
﹣1
A
﹣1
(C
﹣1
)
T
=E 所以A
﹣1
与E合同,故A
﹣1
正定. 方法三 (用定义)注意到对于任意非零向量x,有 x
T
A
﹣1
x=x
T
(A
﹣1
AA
﹣1
)x=(x
T
A
﹣1
)A(A
﹣1
x)=(A
﹣1
x)
T
A(A
﹣1
x)﹥0(A
﹣1
x≠0) 从而A
﹣1
正定. 方法四 因为A正定,那么A对称且可逆,于是A
T
A
﹣1
A=A,所以A
﹣1
与A合同,进而二次型x
T
Ax与x
T
A
﹣1
x有相同的正、负惯性指数.因此,由x
T
Ax是正定二次型,可知x
T
A
﹣1
x也为正定二次型,故A
﹣1
正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Nv4777K
0
考研数学一
相关试题推荐
袋中有n张卡片,分别记有号码1,2,…,n,从中有放回地抽取k次,每次抽取1张,以X表示所得号码之和,求EX,DX.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程y"+p(x)y’+q(x)y=f(x)(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
设事件A与B满足条件则()
向量组(Ⅰ)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi,i=1,2,…,s均可由向量组(Ⅰ)α1,α2,…,αs线性表出,则必有()
设n维行向量α=,矩阵A=E—αTα,B=E+2αTα,则AB=
二次型xtAx正定的充要条件是
设A,B为n阶对称矩阵,下列结论不正确的是().
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设A,B是n阶方阵,A,Y,b是n×1矩阵,则方程组有解的充要条件是()
用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
下列哪些可见于肺炎链球菌肺炎患者
男性40岁,1周前干咳左胸痛,近2日来,畏寒发热38.8℃,气急乏力。体检:心率94次/分,律齐,左胸廓饱满,呼吸运动减弱,左下叩之浊音至实音,语颤减低,呼吸音明显减低。经检查诊断明确后,所给予的下列治疗中哪一项是错误的
患者,女,26岁。产后18小时,突然发生阴道大量出血,色鲜红,头晕目花,心悸怔忡,肢冷汗出,面色苍白;舌淡,脉虚数。下列有关该病的西医治法,说法错误的是
丁公司欠甲公司100万元。2005年10月,甲公司与丙公司签订协议,约定甲公司对丁公司的100万元债权由丙公司享有,但未通知丁公司。同年12月,丙公司向法院起诉丁公司要求归还欠款,有关该案的表达正确的是:()
项目风险的分解途径不包括()。
民用住宅楼梯的坡度范围,宜在()之间。
在临时用地指标中,要求平面布置合理、紧凑,在满足环境、职业健康与安全及文明施工要求的前提下尽可能减少废弃地和死角,临时设施占地面积有效利用率大于()。
简述蒙古统一与元朝建立的经过。
(),对公安工作和队伍建设提出了新的挑战,公安工作和公安队伍建设存在的突出问题迫切需要抓紧解决,这是当前加强正规化建设、明确现阶段新的管理标准的出发点和立足点。
Standingupstraightandkeepingyourbodycenteredmayseemlikesecondnaturetomostofus.Butforpeoplewithbalancedisor
最新回复
(
0
)