首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤ln2.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤ln2.
admin
2019-09-04
86
问题
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫
0
1
f(x)dx|≤
ln2.
选项
答案
由|f(x)|=|f(x)-f(1)|≤|arctanx-arctan1|=|arctanx-[*]|得 |∫
0
1
f(x)dx|≤∫
0
1
|f(x)|dx≤∫
0
1
|arctanx-[*]|dx=∫
0
1
([*]-arctanx)dx =[*]-∫
0
1
arctanxdx=[*]-xarctanx|
0
1
+∫
0
1
[*]ln(1+x
2
)|
0
1
=[*]ln2.
解析
转载请注明原文地址:https://kaotiyun.com/show/2OJ4777K
0
考研数学三
相关试题推荐
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
已知3阶矩阵A的第1行是(a,b,c),矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解.
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2:(2)A的特征值和特征向量;(3)A能否相似于对角矩阵,说明理由.
设f(x)在区间(0,1)内可导,且导函数f’(x)有界,证明:级数绝对收敛.
设D是由曲线y=sinx+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.
设.交换积分次序后I=______.
设f(x)=(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设f(x)=∫01-cosxsint2dt,g(x)=x5/5+x6/6,则当x→0时,f(x)是g(x)的().
随机试题
下列关于合同所附的生效期限与合同中的履行期限的表述正确的是()
瘀血头痛的发病机制为
软组织中出现骨和软骨组织,应考虑是
某机械设备安装工程项目,其分包商在施工过程中,由于操作人员未按操作规程操作机械设备,发生了意外伤亡事故。伤亡事故发生后,项目承包商立即启动了安全生产事故应急救援预案,总包和分包单位根据预案的组织分工立即开始了工作。问题:伤亡事故按其严重程度可
当存在下列事项时通常表明存在较高的验资风险()。
陈列展览的主题和内容不适宜未成年人的,博物馆不得接纳未成年人。()
如果已经造成误机(车、船)事故发生,导游人员和旅行社应该做好事故补救工作,使损失和影响降到最低程度。导游人员要尽快与机场(车站、码头)调度室或者有关部门联系,争取让全体旅游者尽快改乘后续班机(车、船)离开本站,或与旅游者协商采取包机(加挂车厢)或改乘其他交
100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?
2013年1—10月,全国汽车商品累计进出口总额为1307.15亿美元,同比增长2.16%,同比年内首次呈现增长。其中:进口金额664.72亿美元,同比增长0.18%,结束了9月下降趋势;出口金额642.43亿美元,同比增长4.29%,增幅较前9月有所提升
假设线性表的长度为n,则在最坏情况下,冒泡排序需要的比较次数为
最新回复
(
0
)