首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn),minf(X)=λ1=f(X1).
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记 f(X)=XTAX/XTX,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn),minf(X)=λ1=f(X1).
admin
2018-07-27
44
问题
设λ
1
、λ
n
分别为n阶实对称矩阵的最小、最大特征值,X
1
,X
n
分别为对应于λ
1
、λ
n
的特征向量,记
f(X)=X
T
AX/X
T
X,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
n
,maxf(X)=λ
n
=f(X
n
),minf(X)=λ
1
=f(X
1
).
选项
答案
存在正交变换X=PY(P为正交矩阵,Y=(y
1
,y
2
…,y
n
)
T
),使得X
T
AX[*]λ
1
y
1
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
‖Y‖
2
=λ
n
‖X‖
2
=λ
n
X
T
X,当X≠0时,有X
T
X>0,上面不等式两端同除X
T
X,得f(X)=X
T
AX/X
T
X≤λ
n
,又f(X
n
)=X
n
T
AX
n
/X
n
T
X
n
=X
n
T
λ
n
X
n
/X
n
T
X
n
=λ
n
,故maxf(X)=λ
n
=f(X
n
).类似可证minf(X)=λ
1
=f(X
1
).
解析
转载请注明原文地址:https://kaotiyun.com/show/2PW4777K
0
考研数学三
相关试题推荐
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
已知f(x)=,证明f’(x)=0有小于1的正根.
设矩阵A的伴随矩阵A*=,且ABA-1=BA-1+3E.①求矩阵B.
已知X,Y是相互正交的n维列向量,证明E+XYT可逆.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设一抛物线过x轴上两点(1,0)与(3,0).(Ⅰ)求证:此抛物线与两坐标轴围成图形的面积等于此抛物线仅与x轴围成图形的面积;(Ⅱ)求上述两平面图形分别绕x轴旋转一周所得旋转体的体积之比.
已知随机变量X与Y相互独立且都服从参数为的0.1分布,即P{X=0}=P{X=1}=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
设随机变量X与Y相互独立同分布,且都服从p=的0.1分布,则随机变量Z=max{X,Y}的分布律为__________.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(θ为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
随机试题
社会意识相对独立性最突出的表现是()。
Windows桌面“任务栏”上存放的是______。
突然的敲门声,打断人的思路而分散注意力,这属于【】
载脂蛋白B族中主要成分是
下列哪种片剂不宜用硬脂酸镁做润滑剂
在美国发行的外国债券被称为()。
根据《票据法》的规定,下列关于本票的表述中,正确的是()。
下列各句中,画线的词语使用恰当的一项是()。
Onedaypeopleontheshorelistenedshouts【M1】______forhelp.Theyrandowntothesea.Asoldierjumped【M2】______intothewa
Whateverdidwedobeforetheinventionofthezipper?In1893theworld’sfirstzipperwasproducedinChicago.Althoughthein
最新回复
(
0
)