(15年)设矩阵A=,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.

admin2017-05-26  28

问题 (15年)设矩阵A=,且A3=O.
    (Ⅰ)求a的值;
    (Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.

选项

答案(Ⅰ)由A3=O两端取行列式,得|A|3=0,从而得|A|=0,而|A|=a3,所以a=0. (Ⅱ)由已知的X-XA2-AX+AXA2=E,得 X(E-A2)-AX(E-A2)=E 即(E-A)X(E-A2)=E 由(Ⅰ)知 [*] 由于E-A,E-A2均可逆,所以 X=(E-A)-1(E-A2)-1 =[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/2RH4777K
0

随机试题
最新回复(0)