首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( ).
[2008年] 设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( ).
admin
2019-04-05
71
问题
[2008年] 设函数f(x)在(一∞,+∞)内单调有界,{x
n
}为数列,下列命题正确的是( ).
选项
A、若{x
n
}收敛,则{f(x
n
)}收敛
B、若{x
n
}单调,则{f(x
n
)}收敛
C、若{f(x
n
)}收敛,则{x
n
}收敛
D、若{f(x
n
)}单调,则{x
n
}收敛
答案
B
解析
题设中给出数列单调、有界等条件,这自然想到利用命题1.1.4.1确定正确选项,也可以用反例排错法确定之.
解一 若{x
n
}单调,则{f(x
n
)}单调.又f(x)在(一∞,+∞)内有界,可见{f(x
n
)}单调有界,由命题1.1.4.1知{f(x
n
)}收敛.仅(B)入选.
解二 举反例排错法确定正确选项.若取f(x)=arctanx,{x
n
)={n},则可排除(C)、(D).若取f(x)=
和x
n
=
,则
=0且f(x
n
)=
{f(x
n
)}不收敛,排除(A).仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/2WV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
计算下列曲线所围成的平面图形的面积:(1)y=x2,y=x+2(2)y=sinx,y=cosx,x=0(3)y=x2,y=x,y=2x
求二重积分,其中D={(x,y)|(x一1)2+(y—1)2≤2,y≥x}.
此题为用导数定义去求极限,关键在于把此极限构造为广义化的导数的定义式.[*]=(x10)’|x=2+(x10)|x=2=2×10×29=10×210.
设f(x)是以T为周期的连续函数,且F(x)=f(t)dt+bx也是以T为周期的连续函数,则b=________
设连续函数f(x)满足f(x)=,则f(x)=____
设随机变量X1,X2,…,Xn,…相互独立,则根据列维一林德伯格中心极限定理,当n定充分大时,X1+X2+…+Xn近似服从正态分布,只要Xi(i=1,2,…)满足条件()
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2011年]设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
[2013年]设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则().
随机试题
甲状腺髓样癌的特征包括
发动机的燃油消耗率越小,经济性越好。()
下列对影像增强器组成的正确描述是
中国药典(2000年版)采用加硝酸呈色反应鉴别维生素E时,溶解试样的溶剂应为
下列关于著作权的说法,不正确的有:
相邻地区间规划衔接不能达成一致意见,应由()进行协调。
根据《行政复议法实施条例》,经复议机构同意,复议申请可以依法撤回。下列关于复议申请依法撤回的法律效果的说法中,错误的有()。(2014年,经调整)
到新单位后,同事对你工作不支持,你怎么办?
Aboutfiftyyearsago,plantphysiologistssetouttogrowrootsbythemselvesinsolutionsinlaboratoryflasks.Thescientists
A、She’sinameeting.B、She’soutoftheoffice.C、She’stalkingwithanothercustomer.D、She’sspendingherholiday.B细节题。根据四个选
最新回复
(
0
)