首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
admin
2018-06-15
29
问题
设函数f(x)连续,且∫
0
x
f(t)dt=sin
2
x+∫
0
x
tf(x-t)dt.求f(x).
选项
答案
将 ∫
0
x
f(x-t)dt[*]∫
x
0
(x-u)f(u)(-du)=∫
0
x
(x-u)f(u)du =x∫
0
x
f(u)du-∫
0
x
f(u)du 代入原方程即得∫
0
x
f(t)dt=sin
2
x+x∫
0
x
f(u)du-∫
0
x
uf(u)du. ① 由f(x)连续可见以上方程中各项均可导.将方程①两端对x求导即得 f(x)=2sinxcosx+∫
0
x
f(u)du=sin2x+∫
0
x
f(u)du. ② (在①中令x=0,得0=0,不必另加条件①与②同解.) 在②式中令x=0可得f(0)=0,由②式还可知f(x)可导,于是将它两端对x求导,又得 f’(x)=2cos2x+f(x). 故求y=f(x)等价于求解初值问题[*]的特解.解之可得 y=f(x)=2/5(e
x
+2sin2x-cos2x).
解析
转载请注明原文地址:https://kaotiyun.com/show/2Wg4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)上可导且f(a)≠f(b).证明:存在η,ξ∈(a,b),使得
设函数f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f’’(ξ)|≥4.
求函数y=excosx的极值.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
求不定积分
设求极限
设f(u)具有连续的一阶导数,LAB为以为直径的左上半个圆弧,从A到B,其中点A(1,1),点B(3,3).则第二型曲线积分=________
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是________
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立f(tx,ty)=t2f(x,y).设D是由L:x2+y2=4正向一周所围成的闭区域,证明:∮Lf(x,y)dx=∫∫Ddiv[gradf(x,y)]dσ
设z=f(x,y),满足,又,由z=f(x,y)可解出y=y(z,x).求:(I);(Ⅱ)y=(z,x).
随机试题
在下列配送方式中,服务水平最高的一种配送方式是()
阅读《寡人之于国也》中的一段文字,然后回答下列小题。“狗彘食人食而不知检,涂有饿莩而不知发;人死,则曰:‘非我也,岁也。’是何异于刺人而杀之,曰:‘非我也,兵也?’王无罪岁。斯天下之民至焉。”从这段话中可以看出实行王道应持有的正确态度是什么?
癌基因活化的机制是
早失后造成继承牙萌出困难最多的乳牙是
在审判阶段,可以接受人民法院指定担任辩护人的只能是( )。
解决合同及其他纠纷的主要方法是()。
永佃权
专制型教师对学生可能产生()等影响。
钱穆先生曾说:“做学问可训练做人。”初听不免令人困惑,“做学问”是少数人从事的职业,并非人人可为,更非人人必为,除了享受其研究成果,可谓与大多数人的生活毫无干系。不过,若我们把思路放开,钱先生此言也不难理解。这里的关键在“训练”二字:治学的道理、方法,许多
甲、乙两队同学去植树,甲队有一人植树6棵,其余每人都植树13棵;乙队有一人植树5棵,其余每人都植树10棵。已知两队植树棵数相等,且每队植树的棵数大于100而不超过200,那么甲、乙两队共有多少人?
最新回复
(
0
)