首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设幂级数的系数{an}满足an=2,nan-1=n一1,n=1,2,3,….求此幂级数的和函数S(x),其中x∈(一1,1).
设幂级数的系数{an}满足an=2,nan-1=n一1,n=1,2,3,….求此幂级数的和函数S(x),其中x∈(一1,1).
admin
2022-04-10
101
问题
设幂级数
的系数{a
n
}满足a
n
=2,na
n-1
=n一1,n=1,2,3,….求此幂级数的和函数S(x),其中x∈(一1,1).
选项
答案
求解本题的关键是确定幂级数[*]的系数a
n
(n=0,1,2,…).为此在系数的递推公式na
n
=a
n-1
+n一1中依次令n=1,2,3即得a
1
=a
n
=2,[*]由此可猜想.[*]都成立.用数学归纳法只需证明若[*]成立,则[*]也成立即可.事实上,由(n+1)a
n+1
=a
n
+n可得[*]即系数{a
n
}的递推公式埘任何n≥2成立.从而幂级数[*]即和函数[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kQR4777K
0
考研数学三
相关试题推荐
把下列函数展开傅里叶级数:(1)f(x)=sinx/3(-π≤x≤π);(2)f(x)=|sinx|(-π≤x≤π)(3)f(x)=cosλx(-π≤x≤π,0<λ<1);(4)
试决定y=k(x2-3)2中k的值,使曲线在拐点处的法线通过原点.
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线.y=f(x)相交于点C(c,f©其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f’’(ξ)=0.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
求∫arcsin2xdx.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值。
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(-1,-3,-4,-7),α4=(2,1,2,3);
随机试题
下列有关骨髓纤维化的说法错误的是
( )是组织设计的一项原则。
对资产评估中的企业价值、账面价值与公司市值的叙述中,不正确的是( )。
下列不属于稀释性潜在普通股的是()。(2012年)
农业生态系统模式:沼气、猪、鸡、玉米、粪便、沼气池。在一个人工农业生态系统中,玉米、鸡、猪、人组成的食物网如图所示。鸡、猪、人的粪便以及玉米秸秆通过沼气池发酵,产生的沼气用于照明和做饭,沼渣可以做肥料。请分析回答以下问题:此生态系统中能量流动的起点
开普勒是世界上第一个用数学公式描述天体运动的人,他提出了天体运动三定律.这体现了数学与__________之间的联系.
有些福建人不爱吃辣椒。因此,有些爱吃甜食的人不爱吃辣椒。以下哪项能保证上述推论成立?
2015年6月,全国全社会用电量占上半年的比重与去年相比:
软件开发的原型化方法是一种与结构化方法具有不同策略的方法,其最有效的应用领域应该是()。
EffectiveAssignmentsUsingLibraryandInternetResourcesI.Setting【T1】andmakingthemcleartostudents【T1】______—developing
最新回复
(
0
)