首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,aα2,…,αs,β中任意s个向量线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,aα2,…,αs,β中任意s个向量线性无关.
admin
2017-04-11
77
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表示式的系数全不为零,证明:α
1
,aα
2
,…,α
s
,β中任意s个向量线性无关.
选项
答案
用反证法.设α
1
,α
2
,…,α
s
,β中任意s个向量组α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
,β线性相关,则存在不全为零的k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,k使得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
+kβ=0. ① 另一方面,由题设 β=l
1
α
1
+l
2
α
2
+…+l
i
α
i
+…+l
s
α
s
,其中l
i
≠0,i=1,2,…,s.代入上式,得 (k
1
+kl
1
)α
1
+(k
2
+kl
2
)α
2
+…+(k
i-1
+kl
i-1
)α
i-1
+kl
i
α
i
+(k
i+1
+kl
i+1
)α
i+1
+…+(k
s
+kl
s
)α
s
=0? 因已知α
1
,α
2
,…,α
s
线性无关,从而由kl
i
=0,l
i
≠0,故k=0,从而由①式得k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
均为0,矛盾. 故α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/2tt4777K
0
考研数学二
相关试题推荐
求幂级数在区间(-1,1)内的和函数S(x).
设函数f(x)在[a,b]上具有连续的二阶导数,证明:在(a,b)内存在一点ξ,使得∫abf(x)dx=(b-a)(b-a)3f"(ξ)①
根据已知条件,进行作答。设f(x)在[a,b]上连续,证明(∫abf(x)dx)2≤(b-a)∫abf2(x)dx.
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,∫0λf(x)dx≥λ∫01f(x)dx.
设函数f(x),g(x)在[a,b]上连续,且g(x)>0,利用闭区间上连续函数的性质,证明存在一点ξ∈[a,b]使得∫abf(x)g(x)dx=f(ξ)∫abg(x)dx
设f(x)是连续函数,F(x)是f(x)的原函数,则________。
设函数z(x,y)由方程给出,F,z都是可微函数,则有等式
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求出F(x)的表达式。
随机试题
能使心肌梗死患者闭塞的冠状动脉再通的措施有()。
最易发生缺血一再灌注损伤的器官是
纤维性很强的中药细粉制颗粒时,应选用的黏合剂是
某研究小组通过观察2016年-2018年鼻咽癌在珠三角往长江三角移民、珠三角当地人群及长江三角当地人群的发病率和死亡率的差异,探讨鼻咽癌的病因及其与遗传和环境因素的关系。这种方法是
就甲、乙两家投标单位而言,若不考虑资金时间价值,判断并简要分析业主应优先选择哪家投标单位?评标委员会对甲、乙、丙三家投标单位的技术标评审结果见表1-7。评标办法规定:各投标单位报价比标底价每下降1%,扣1分,最多扣10分;报价比标底价每增加1%,扣2
股票市场就是股票发行和交易的场所,由()两个层次构成。
用干画法进行作画时,颜料要求要干,这样才能使得色彩艳丽。()
日本脱口秀表演家金语楼曾获多项专利。有一种在打火机上装一个小抽屉代替烟灰缸的创意,在某次创意比赛中获得了大奖,备受推崇。比赛结束后,东京的一家打火机制造厂商将此创意进一步开发成产品推向市场,结果销路并不理想。以下哪项如果为真,能最好地解释上面的矛盾?(
据国际卫生与保健组织1999—7—年会“通讯与健康”公布的调查报告显示,68%的脑癌患者都有经常使用移动电话的历史。这充分说明,经常使用移动电话将会极大地增加一个人患脑癌的可能性。以下哪项如果为真,则将最严重地削弱上述结论?
一般来说,影响汇率短期变动的最重要因素是()。
最新回复
(
0
)