首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组(I)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
n维向量组(I)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
admin
2019-04-09
65
问题
n维向量组(I)α
1
,α
2
,…,α
r
可以用n维向量组(Ⅱ)β
1
,β
2
,…,β
s
线性表示.
选项
A、如果(I)线性无关,则r≤s.
B、如果(I)线性相关,则r>s.
C、如果(Ⅱ)线性无关,则r≤s.
D、如果(Ⅱ)线性相关,则r>s.
答案
A
解析
(C)和(D)容易排除,因为(Ⅱ)的相关性显然不能决定r和s的大小关系的.
(A)当向量组(I)可以用(Ⅱ)线性表示时,如果r>s,则(I)线性相关.因此现在(I)线性无关,一定有r≤s.
(B)则是这个推论的逆命题,是不成立的.
也可用向量组秩的性质来说明(A)的正确性:
由于(I)可以用(Ⅱ)线性表示,有
r(I)≤r(Ⅱ)≤s
又因为(I)线性无关,所以r(I)=r.于是r≤s.
转载请注明原文地址:https://kaotiyun.com/show/UpP4777K
0
考研数学三
相关试题推荐
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2)上的最大值与最小值.
设为A的特征向量.(I)求a,b及A的所有特征值与特征向量.(Ⅱ)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
若正项级数an与正项级数bn都收敛,证明下列级数收敛:
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx如也是以T为周期的连续函数,则b=______.
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其均值和方差分别为,S2,则可以作出服从自由度为n的χ2分布的随机变量是()
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后放回;
随机试题
Whatdoesthewomanimplywhenshesays,"someofusinthedepartmentaregoingtoseeittonight"?
下列关于生活中的常识说法错误的有()。
许多高校在新生入学不久要细织“新生体能考查”,一般考查项目包括男生2000米跑,100米跑,掷铅球和立定跳远等;女生1000米跑,50米跑,掷铅球和仰卧起坐等。考查的目的:一是“摸底”,即对这届新生的运动水平做一个初步调查;二是“定标”,即根据考查的情
中国货物贸易结构的特点是()
下列表述中,属于民法的基本原则的是()
案例五:某公司员工每月工资为3400元,公司在发放工资时代扣代缴员工的个人所得税。根据案例五,回答下列题目:接上题,每位员工全年应纳个人所得税为( )元。
在与自然灾害的抗争中,人类仍然有很长的路要走。现实固然必须正视,但普通民众是否就无可作为呢?在灾害预测还无法做到完全精确的今天,每一个人该如何保护上天赋予我们的宝贵生命,该如何在灾难降临的那一刻做出最及时而智慧的选择,该如何自救、救人,避免或减少悲剧的发生
设f(x)在点x=0处具有二阶导数,且,求f(0),f’(0)与f’’(0).
あの女は女のようではない。
A、Peopleshouldaimhightoensuretheyareactiveinmaintainingahappymarriage.B、Thecouple’srelationshipskillsareimpor
最新回复
(
0
)